
Units 1, 2, 3 Data Storage

- 1. Perform the following operations and convert the results to their dec imal equivalents:
 - (a) 8-bit two's complement: $01100000_2 + 11100100_2$
 - (b) 8-bit two's complement: 000001112 000011012
 - (c) 8-bit excess (128-excess): (-100)+(-90)
- 2. Consider LZW with special symbol '_'. Using the following initial d ictionary to code the string: "you_see_no_see_you_no_see_i_see". You need to show your dictionary.

Symbol	e	i	n	0	S	u	У	_
Code	1	2	3	4	5	6	7	8

- 3. A message encoded using Hamming Code (7,4) is received as 1011110. Us e the Error Correction Code (ECC) technique to identify and correct a ny errors in the received message and then retrieve the original 4-bit data message.
 - d_1 , d_2 , d_3 , d_4 are 4-bit data; p_1 , p_2 , p_3 are their parities.

Bit #	1	2	3	4	5	6	7
Transmitted bit	p_{l}	<i>p</i> 2	<i>d</i> 1	<i>p</i> 3	d_2	d_3	d 4

4. Using Huffman encoding to code the message "ACDACACDBCCCACAA" consist ing of 4 symbols and 16 characters. How many bits does Huffman code u se? You need to draw the Huffman tree.