
Introduction to Computer Science
Lecture 11: Theory of Computation

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)
Department of Electrical Engineering

National Taiwan University

tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

Tian-Li Yu Theory of Computation 1 / 32

mailto:tianliyu@cc.ee.ntu.edu.tw
creativecommons.org/licenses/by-nc-sa/3.0/tw/deed.zh_TW

Computability & Turing Machines

Computability

Well-defined input and output
Computation of these functions lies beyond any algorithmic system→
noncomputable.

Hold it... but algorithms are defined on some particular primitives, and primitives are
defined on some particular machine.

We need a universal machine to define computation.

Tian-Li Yu Theory of Computation 2 / 32

Computability & Turing Machines

Turing Machine

Alan Turing, 1936

Finite state automata + infinite R/W tape
- Finite states.
- A tape with infinite cells.
- R/W head moving one cell per time (left/right).
- Finite alphabet (0,1,*).

Tian-Li Yu Theory of Computation 3 / 32

Computability & Turing Machines

Incrementing a Value

Current state Current cell
content Value to write Direction to

move
New state to

enter

START * * Left ADD
ADD 0 1 Right RETURN
ADD 1 0 Left CARRY
ADD * * Right HALT

CARRY 0 1 Right RETURN
CARRY 1 0 Left CARRY
CARRY * 1 Left OVERFLOW

OVERFLOW * * Right RETURN
RETURN 0 0 Right RETURN
RETURN 1 1 Right RETURN
RETURN * * No move HALT

Tian-Li Yu Theory of Computation 4 / 32

Computability & Turing Machines

Church-Turing Thesis

The functions that are computable by a Turing machine are exactly the
functions that can be computed by any algorithmic means.

Tian-Li Yu Theory of Computation 5 / 32

Computability & Turing Machines

Bare Bones Language

One of the universal programming languages
- Simple imperative programming languages
- Rich enough to compute all Turing-computable functions
- Bare bones→ minimal set

clear name;
incr name;
decr name; /* remains 0 if already 0 !!!*/
while name not 0 do; ... end;

Tian-Li Yu Theory of Computation 6 / 32

Computability & Turing Machines

Examples

clear Z;
while X not 0 do;

clear W;
while Y not 0 do;

incr Z;
incr W;
decr Y;

end;
while W not 0 do;

incr Y;
decr W;

end;
decr X;

end;

clear Aux;
clear Tomorrow;
while Today not 0 do;

incr Aux;
decr Today;

end;
while Aux not 0 do;

incr Today;
incr Tomorrow;
decr Aux;

end;

Tian-Li Yu Theory of Computation 7 / 32

Incomputable Problem

The Halting Problem

Are all algorithms (functions) computable?

Input: encoding of a program.
Output: 1 if the program halts; 0 otherwise.

Is it possible to write such an algorithm?
- Suppose S(p) is such an algorithm.
- S(p) returns 1 if p halts.
- S(p) returns 0 if p doesn’t halt.

1st known incomputable problem

Tian-Li Yu Theory of Computation 8 / 32

Incomputable Problem

Proof (Short, Conceptual Version)

S(p): The solution to the halting problem

N(p)

1. x = S(p)
2. while x not 0 do
3. end

Does N(N) halt?

If N(N) halts→ S(N) returns 1→ N(N) does not halt

If N(N) doesn’t halt→ S(N) returns 0→ N(N) halts

Tian-Li Yu Theory of Computation 9 / 32

Incomputable Problem

Gödel Number & Incomplete Theory

All Turing machines (computable functions) can be mapped (1-to-1) to natural
numbers.

- The set of Turing machines is countable infinite.
- The number is called the Gödel number.

Gödel’s incomplete theory (Kurt Gödel, 1931)
- Later used by Turing.
- “Any effectively generated theory capable of expressing elementary arithmetic cannot

be both consistent and complete.
- In particular, for any consistent, effectively generated formal theory that proves certain

basic arithmetic truths, there is an arithmetical statement that is true, but not provable in
the theory.”

Tian-Li Yu Theory of Computation 10 / 32

Incomputable Problem

Halting Problem: 1st Incomputable

Is the following function computable?
- x and i are integers.

Procedure g(i)

1. if h(i, i) == 0
2. return
3. else
4. loop forever

h(x , i) =

1, if program x halts on input i
0, otherwise

Let g’s Gödel number be e

Diagonalization proof
- h(e,e) = 0→ g doesn’t halts on e → but g actually halts.
- h(e,e) = 1→ g halts on e → but g actually doesn’t halts.

Tian-Li Yu Theory of Computation 11 / 32

Incomputable Problem

Diagonalization Proof

Procedure x
h(x , i)

1 2 3 4 5

1 1 0 1 0 1
2 1 1 0 0 0
3 0 0 0 1 1
4 1 1 0 1 0

Input i

5 0 0 1 1 0

h(i, i) 1 1 0 1 0
g(i): halt:1, otherwise:0 0 0 1 0 1

Invert the diagonal. So g can not be any procedure x.

Tian-Li Yu Theory of Computation 12 / 32

P and NP

Complexity Classes

Developed by Cook & Karp in early 70.

The class P: class of problems that can be solved in polynomial time in the size of
input.

- Problems in P is considered tractable.
- Closed under addition, multiplication, composition, complement, etc. (closure property).

The class NP (Nondeterministic Polynomial)
- Polynomial time in the size of input on a nondeterministic Turing machine

(nondeterministic finite state automata + infinite tape)

Tian-Li Yu Theory of Computation 13 / 32

P and NP

P vs. NP

Finding max→ Θ(n)
Sorting→ Θ(n log n)

Traveling salesman problem (TSP)→ Θ(nn)?

Tian-Li Yu Theory of Computation 14 / 32

P and NP

Traveling Salesman Problem

Traveling salesman problem (TSP)
- Instance: A set of n cities, distance between each pair of cities, and a bound B.
- Question: Is there a route that starts and ends at a given city, visits every city exactly

once, and has total distance ≤ B?

TSP ∈ NP?
- Guess a tour, verify if it visits every city exactly once, returns to the start, and total

distance ≤ B.

co-TSP
- Are all tours that start and end at a given city, visit every city exactly once, and have total

distance > B?

Tian-Li Yu Theory of Computation 15 / 32

P and NP

Subset Sum Problem

Subset sum problem (SSP)
- Given a finite set of integers, is there a non-empty subset which sums to 0?

SSP ∈ NP?
- Guess a set (certificate), verify if it is a subset and sums to 0.

co-SSP
- Yes/No→ No/Yes
- Does every non-empty subset have a nonzero sum?

Tian-Li Yu Theory of Computation 16 / 32

P and NP

Properties of NP

All problems in P are also in NP.
- P ⊆ NP
- P = NP? No one knows yet. A 7-million dollar question.

Solutions to problems in NP can be verified in polynomial time in the size of input.
NP is not known to be closed under complement.

- co-NP
- x ∈ co-NP iff “complement of x” ∈ NP

P=NP=co-NP

If NP=P

Tian-Li Yu Theory of Computation 17 / 32

P and NP

NP, co-NP, and P

All these are possible.

General Belief

co-NPccNP P

NP=co-NP P

General Belief

co-NPccNP P

P=NP=co-NP

In 2002, a survey of 100 researchers
- 61 think No, 9 think Yes, 22 uncertain, 8 think impossible to prove.

Tian-Li Yu Theory of Computation 18 / 32

P and NP

NP-Completeness

The class NP-complete (NPC)
- Intuitively, if any NPC problem can be solved in polynomial time⇒ All problems in NP

can be solved in polynomial time.

NP

General Belief

P NPC P=NP=NPC

If NP=P

Tian-Li Yu Theory of Computation 19 / 32

P and NP

NPC

Intuitively, NPC are problems that are the most difficult ones in NP.

How do we define “difficulty” when we don’t know their complexity?

Key: reduction

Tian-Li Yu Theory of Computation 20 / 32

P and NP Reduction

Polynomial-Time Reduction

Motivation:
- Let L1 and L2 be two decision problems. Suppose algorithm A2 can solve L2. Can we

use A2 to solve L1?

Polynomial-time reduction f from L1 to L2: L1 ≤P L2
- x is an “yes” input for L1 iff f(x) is an yes input for L2.
- f is P-time computable.
- L1 is P-time reducible to L2

- L2 is at least as hard as L1
- f is reduction function.

L1 L2

{0, 1}*{0, 1}*
f

Tian-Li Yu Theory of Computation 21 / 32

P and NP Reduction

Significance of Reduction

L1 ≤P L2 implies
- ∃ P-time algorithm for L2 → ∃ P-time algorithm for L1 (L2 ∈ P → L1 ∈ P)
- No P-time algorithm for L1 → no P-time algorithm for L2 (L1 < P → L2 < P)

x
f x()

A1

A2f

2)(, Lxfyes ∈

2)(, Lxfno ∉

1)(, Lxfno ∉

1)(, Lxfyes ∈

≤P is transitive, i.e., L1 ≤P L2 & L2 ≤P L3 ⇒ L1 ≤P L3

Tian-Li Yu Theory of Computation 22 / 32

P and NP Reduction

Definition of NPC, NP-Hard

L ∈ NPC iff
- L ∈ NP and ∀L ′ ∈ NP,L ′ ≤p L

L ∈ NP-hard iff
- ∀L ′ ∈ NP,L ′ ≤P L

To prove a problem is NPC, we need one very first NPC problem and then use
P-reduction.

Now, it’s easily seen that the optimization version of a NPC problem is NP-hard.

Tian-Li Yu Theory of Computation 23 / 32

P and NP Reduction

Proving NP-Completeness

Five steps for proving that L is NPC:
- Prove L ∈ NP.
- Choose a known NPC problem L ′.
- Construct a reduction f transforming every instance of L ′ to an instance of L .
- Prove that x ∈ L ′ if f(x) ∈ L for all x.
- Prove that f is polynomial-time computable.

A known
NP-complete
problem L’

A problem L
to be proved
NP-completereduce

f

Tian-Li Yu Theory of Computation 24 / 32

P and NP Reduction

1st
NPC Problem

Circuit-SAT (Stephen Cook, 1971)

- Probably the 1st . He proved 21 NPC problems in the same paper.
- Instance: A combinational circuit C composed of AND, OR, and NOT gates.
- Question: Is there an assignment of Boolean values to the inputs that makes the output

of C to be 1?

Satisfiability (SAT) (Stephen Cook, 1971)

- Determining if the variables of a given Boolean formula can be assigned in such a way
as to make the formula evaluate to TRUE.

Tian-Li Yu Theory of Computation 25 / 32

P and NP Reduction

Circuit-SAT ≤P SAT

X1 1
1

1

1

1

1

1
1

1

0

0

1

0

X2

X3

X2

X3

X1 X5

X6

X4

X7

X9

X8

X10

ϕ = x10 ∧ (x4 ↔ ¬x3) ∧ (x5 ↔ (x1 ∨ x2)) ∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4)) ∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7)) ∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

1 SAT ∈ NPC

2 Circuit C is satisfiable iff ϕ is satisfiable

3 ϕ is P-time constructible and maps every instance.

Tian-Li Yu Theory of Computation 26 / 32

P and NP Reduction

Clique

A clique in G is a complete subgraph of G.
The clique problem

- Instance: G = (V ,E) and a positive integer k ≤ |V |.
- Question: Is there a clique V ′ ⊆ V of size ≥ k?

Clique ∈ NP
- Can be verified in O(k 2) time.

Tian-Li Yu Theory of Computation 27 / 32

P and NP Reduction

3SAT ≤P Clique

Let ϕ = C1 ∧ C2 ∧ ... ∧ Ck be a Boolean formula in 3-CNF with k clauses.
For each Cr = (lr1 ∨ lr2 ∨ lr3), introduce a triple of vertices v r

1, v
r
2, v

r
3 in V .

Build an edge between v r
i , v

s
j if both of the following hold:

- v r
i , v

s
j are in different triples (r , s)

- lri is not the negation of lsi
Claim: G can be computed from ϕ in P-time.

Tian-Li Yu Theory of Computation 28 / 32

P and NP Reduction

Reduction Example

ϕ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 ¬x2 ¬x3

¬x1 x1

x2 x2

x3 x3

C x x x1 1 2 3= ∨ ¬ ∨ ¬

C x x x2 1 2 3= ¬ ∨ ∨ C x x x3 1 2 3= ∨ ∨

Tian-Li Yu Theory of Computation 29 / 32

P and NP Reduction

ϕ Satisfiable⇔ G Has a k -Clique

ϕ satisfiable⇒ each Cr contains at least one lri = 1 and each such literal
corresponds to a vertex v r

i .
Picking a “true” literal from each Cr forms a set of V ′ of k vertices.
For any two vertices v r

i , v
s
j ∈ V ′, r , s, lri = lsj = 1 and thus lri , l

s
j cannot be

complements. ⇒ edge (v r
i , v

s
j) ∈ E.

x1 ¬x2 ¬x3

¬x1 x1

x2 x2

x3 x3

C x x x1 1 2 3= ∨ ¬ ∨ ¬

C x x x2 1 2 3= ¬ ∨ ∨ C x x x3 1 2 3= ∨ ∨

Tian-Li Yu Theory of Computation 30 / 32

P and NP Reduction

Coping with NP-Complete/-Hard

Approximation algorithms:
- Guarantee to be “not-too-bad.”

Pseudo-polynomial time algorithms:
- e.g., DP for the 0-1 Knapsack problem.

Probabilistic algorithms:
- Assume some probabilistic distribution of the instances.

Randomized algorithms/heuristics:
- Make use of a randomizer/heuristic:
- No guarantee of performance.
- Simulated annealing, genetic algorithms, etc.

EXP-algorithms/branch & bound/exhaustive:
- Feasible only when the problem is small.

Tian-Li Yu Theory of Computation 31 / 32

P and NP Reduction

License

Page File Licensing Source/ author

3
”Alan Turing”., Source: http://www.ieee.org/portal/cms_docs_

sscs/sscs/08Spring/KFig6_turing.jpg, Date:2013/03/06, Fair use
under copyright law 46,52,65.

3
”The Turing Machine”., Source: http://www.yorku.ca/lbianchi/
sts3700b/lecture14a.html, Date:2013/03/06, Fair use under copy-
right law 46,52,65.

Tian-Li Yu Theory of Computation 32 / 32

http://www.ieee.org/portal/cms_docs_sscs/sscs/08Spring/KFig6_turing.jpg
http://www.ieee.org/portal/cms_docs_sscs/sscs/08Spring/KFig6_turing.jpg
http://www.yorku.ca/lbianchi/sts3700b/lecture14a.html
http://www.yorku.ca/lbianchi/sts3700b/lecture14a.html

	Computability & Turing Machines
	Incomputable Problem
	P and NP
	Reduction

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	anm0:

