Introduction to Computer Science Lecture 11: THEORY OF COMPUTATION

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL) Department of Electrical Engineering National Taiwan University

tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

Computability

- Well-defined input and output
- Computation of these functions lies beyond any algorithmic system → noncomputable.
- Hold it... but algorithms are defined on some particular primitives, and primitives are defined on some particular machine.
- We need a universal machine to define computation.

Turing Machine

• Alan Turing, 1936

• Finite state automata + infinite R/W tape

- Finite states.
- A tape with infinite cells.
- R/W head moving one cell per time (left/right).
- Finite alphabet (0,1,*).

Incrementing a Value

Current state	Current cell content	Value to write	Direction to move	New state to enter
START	*	*	Left	ADD
ADD	0	1	Right	RETURN
ADD	1	0	Left	CARRY
ADD	*	*	Right	HALT
CARRY	0	1	Right	RETURN
CARRY	1	0	Left	CARRY
CARRY	*	1	Left	OVERFLOW
OVERFLOW	*	*	Right	RETURN
RETURN	0	0	Right	RETURN
RETURN	1	1	Right	RETURN
RETURN	*	*	No move	HALT

Church-Turing Thesis

The functions that are computable by a Turing machine are exactly the functions that can be computed by any algorithmic means.

Bare Bones Language

- One of the universal programming languages
 - Simple imperative programming languages
 - Rich enough to compute all Turing-computable functions
 - Bare bones \rightarrow minimal set
- clear name;
- incr name;
- decr name; /* remains 0 if already 0 !!!*/
- while name not 0 do; ... end;

Examples

```
clear Z;
while X not 0 do;
   clear W;
   while Y not 0 do;
      incr Z;
      incr W;
      decr Y;
   end;
   while W not 0 do;
       incr Y;
       decr W;
    end;
    decr X;
end;
```

```
clear Aux;
clear Tomorrow;
while Today not 0 do;
    incr Aux;
    decr Today;
end:
while Aux not 0 do;
    incr Today;
    incr Tomorrow;
   decr Aux;
end;
```


The Halting Problem

- Are all algorithms (functions) computable?
- Input: encoding of a program.
- Output: 1 if the program halts; 0 otherwise.
- Is it possible to write such an algorithm?
 - Suppose S(p) is such an algorithm.
 - S(p) returns 1 if p halts.
 - S(p) returns 0 if p doesn't halt.

1st known incomputable problem

Incomputable Problem

Proof (Short, Conceptual Version)

S(p): The solution to the halting problem

N(*p*) 1. *x* = *S*(*p*) 2. while *x* not 0 do 3. end

Does N(N) halt?

If N(N) halts $\rightarrow S(N)$ returns $1 \rightarrow N(N)$ does not halt

If N(N) doesn't halt $\rightarrow S(N)$ returns $0 \rightarrow N(N)$ halts

Gödel Number & Incomplete Theory

- All Turing machines (computable functions) can be mapped (1-to-1) to natural numbers.
 - The set of Turing machines is countable infinite.
 - The number is called the Gödel number.
- Gödel's incomplete theory (Kurt Gödel, 1931)
 - Later used by Turing.
 - "Any effectively generated theory capable of expressing elementary arithmetic cannot be both consistent and complete.
 - In particular, for any consistent, effectively generated formal theory that proves certain basic arithmetic truths, there is an arithmetical statement that is true, but not provable in the theory."

Halting Problem: 1st Incomputable

- Is the following function computable?
 - x and *i* are integers.

```
      Procedure g(i)

      1. if h(i, i) == 0

      2. return

      3. else

      4. loop forever
```

 $h(x,i) = \begin{cases} 1, & \text{if program } x \text{ halts on input } i \\ 0, & \text{otherwise} \end{cases}$

Let g's Gödel number be e

- Diagonalization proof
 - $h(e, e) = 0 \rightarrow g$ doesn't halts on $e \rightarrow$ but g actually halts.
 - $h(e, e) = 1 \rightarrow g$ halts on $e \rightarrow$ but g actually doesn't halts.

Diagonalization Proof

h(x i)	Procedure x					
$\Pi(X, I)$		1	2	3	4	5
Input i	1	1	0	1	0	1
	2	1	1	0	0	0
	3	0	0	0	1	1
	4	1	1	0	1	0
	5	0	0	1	1	0

Invert the diagonal. So g can not be any procedure x.

Complexity Classes

- Developed by Cook & Karp in early 70.
- The class *P*: class of problems that can be solved in polynomial time in the size of input.
 - Problems in \mathcal{P} is considered tractable.
 - Closed under addition, multiplication, composition, complement, etc. (closure property).
- The class NP (Nondeterministic Polynomial)
 - Polynomial time in the size of input on a nondeterministic Turing machine (nondeterministic finite state automata + infinite tape)

 $\mathcal P$ and $\mathcal N\mathcal P$

$\mathcal P$ vs. $\mathcal N\mathcal P$

- Finding max $\rightarrow \Theta(n)$
- Sorting $\rightarrow \Theta(n \log n)$
- Traveling salesman problem (TSP) $\rightarrow \Theta(n^n)$?

Traveling Salesman Problem

- Traveling salesman problem (TSP)
 - Instance: A set of *n* cities, distance between each pair of cities, and a bound *B*.
 - Question: Is there a route that starts and ends at a given city, visits every city exactly once, and has total distance $\leq B$?
- TSP $\in \mathcal{NP}$?
 - Guess a tour, verify if it visits every city exactly once, returns to the start, and total distance ≤ B.
- co-TSP
 - Are all tours that start and end at a given city, visit every city exactly once, and have total distance > B?

Subset Sum Problem

- Subset sum problem (SSP)
 - Given a finite set of integers, is there a non-empty subset which sums to 0?
- SSP $\in \mathcal{NP}$?
 - Guess a set (certificate), verify if it is a subset and sums to 0.
- co-SSP
 - Yes/No \rightarrow No/Yes
 - Does every non-empty subset have a nonzero sum?

$\mathcal P$ and $\mathcal N\mathcal P$

Properties of \mathcal{NP}

- All problems in \mathcal{P} are also in \mathcal{NP} .
 - $\mathcal{P} \subseteq \mathcal{NP}$
 - $\mathcal{P} = \mathcal{NP}$? No one knows yet. A 7-million dollar question.
- Solutions to problems in \mathcal{NP} can be verified in polynomial time in the size of input.
- \mathcal{NP} is not known to be closed under complement.
 - co- \mathcal{NP}
 - $x \in \text{co-}\mathcal{NP}$ iff "complement of x" $\in \mathcal{NP}$

\mathcal{NP} , co- \mathcal{NP} , and \mathcal{P}

• All these are possible.

In 2002, a survey of 100 researchers

- 61 think No, 9 think Yes, 22 uncertain, 8 think impossible to prove.

NP-Completeness

- The class \mathcal{NP} -complete (\mathcal{NPC})
 - Intuitively, if any NPC problem can be solved in polynomial time \Rightarrow All problems in NP can be solved in polynomial time.

- Intuitively, NPC are problems that are the most difficult ones in NP.
- How do we define "difficulty" when we don't know their complexity?
- Key: reduction

Polynomial-Time Reduction

- Motivation:
 - Let *L*₁ and *L*₂ be two decision problems. Suppose algorithm *A*₂ can solve *L*₂. Can we use *A*₂ to solve *L*₁?
- Polynomial-time reduction *f* from L_1 to L_2 : $L_1 \leq_{\mathcal{P}} L_2$
 - x is an "yes" input for L_1 iff f(x) is an yes input for L_2 .
 - f is \mathcal{P} -time computable.
 - L_1 is \mathcal{P} -time reducible to L_2
 - L_2 is at least as hard as L_1
 - f is reduction function.

Significance of Reduction

- $L_1 \leq_{\mathcal{P}} L_2$ implies
 - $\exists \mathcal{P}$ -time algorithm for $L_2 \to \exists \mathcal{P}$ -time algorithm for $L_1 \ (L_2 \in \mathcal{P} \to L_1 \in \mathcal{P})$
 - No \mathcal{P} -time algorithm for $L_1 \to \text{no } \mathcal{P}$ -time algorithm for L_2 $(L_1 \notin \mathcal{P} \to L_2 \notin \mathcal{P})$

• $\leq_{\mathcal{P}}$ is transitive, *i.e.*, $L_1 \leq_{\mathcal{P}} L_2 \& L_2 \leq_{\mathcal{P}} L_3 \Rightarrow L_1 \leq_{\mathcal{P}} L_3$

Definition of NPC, NP-Hard

- $L \in \mathcal{NPC}$ iff
 - $L \in \mathcal{NP}$ and $\forall L' \in \mathcal{NP}, L' \leq_p L$
- $L \in \mathcal{NP}$ -hard iff
 - $\forall L' \in \mathcal{NP}, L' \leq_P L$
- To prove a problem is *NPC*, we need one very first *NPC* problem and then use *P*-reduction.
- Now, it's easily seen that the optimization version of a NPC problem is NP-hard.

Proving *NP*-Completeness

- Five steps for proving that *L* is *NPC*:
 - Prove $L \in \mathcal{NP}$.
 - Choose a known *NPC* problem *L'*.
 - Construct a reduction f transforming every instance of L' to an instance of L.
 - Prove that $x \in L'$ if $f(x) \in L$ for all x.
 - Prove that *f* is polynomial-time computable.

1st *NPC* Problem

- Circuit-SAT (Stephen Cook, 1971)
 - Probably the 1st. He proved 21 NPC problems in the same paper.
 - Instance: A combinational circuit C composed of AND, OR, and NOT gates.
 - Question: Is there an assignment of Boolean values to the inputs that makes the output of *C* to be 1?
- Satisfiability (SAT) (Stephen Cook, 1971)
 - Determining if the variables of a given Boolean formula can be assigned in such a way as to make the formula evaluate to TRUE.

$\mathsf{Circuit}\text{-}\mathsf{SAT} \leq_{\mathcal{P}} \mathsf{SAT}$

$$\begin{aligned} \varphi &= x_{10} \land (x_4 \leftrightarrow \neg x_3) \land (x_5 \leftrightarrow (x_1 \lor x_2)) \land (x_6 \leftrightarrow \neg x_4) \\ \land (x_7 \leftrightarrow (x_1 \land x_2 \land x_4)) \land (x_8 \leftrightarrow (x_5 \lor x_6)) \\ \land (x_9 \leftrightarrow (x_6 \lor x_7)) \land (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)) \end{aligned}$$

- $\bigcirc SAT \in \mathcal{NPC}$
- 2 Circuit C is satisfiable iff φ is satisfiable
- **3** φ is \mathcal{P} -time constructible and maps every instance.

Clique

- A clique in G is a complete subgraph of G.
- The clique problem
 - Instance: G = (V, E) and a positive integer $k \leq |V|$.
 - Question: Is there a clique $V' \subseteq V$ of size $\geq k$?
- Clique $\in \mathcal{NP}$
 - Can be verified in $O(k^2)$ time.

$3SAT \leq_{\mathcal{P}} Clique$

- Let $\varphi = C_1 \wedge C_2 \wedge ... \wedge C_k$ be a Boolean formula in 3-CNF with *k* clauses.
- For each $C_r = (l_1^r \vee l_2^r \vee l_3^r)$, introduce a triple of vertices v_1^r, v_2^r, v_3^r in *V*.
- Build an edge between v_i^r , v_i^s if both of the following hold:
 - v_i^r , v_i^s are in different triples ($r \neq s$)
 - I_i^r is not the negation of I_i^s
- Claim: G can be computed from φ in \mathcal{P} -time.

Reduction Example

$$\varphi = (x_1 \vee \neg x_2 \vee \neg x_3) \land (\neg x_1 \vee x_2 \vee x_3) \land (x_1 \vee x_2 \vee x_3)$$

Tian-Li Yu

φ Satisfiable \Leftrightarrow *G* Has a *k*-Clique

- φ satisfiable ⇒ each C_r contains at least one I^r_i = 1 and each such literal corresponds to a vertex v^r_i.
- Picking a "true" literal from each C_r forms a set of V' of k vertices.
- For any two vertices v^r_i, v^s_j ∈ V', r ≠ s, l^r_i = l^s_j = 1 and thus l^r_i, l^s_j cannot be complements. ⇒ edge (v^r_i, v^s_j) ∈ E.

Coping with NP-Complete/-Hard

- Approximation algorithms:
 - Guarantee to be "not-too-bad."
- Pseudo-polynomial time algorithms:
 - e.g., DP for the 0-1 Knapsack problem.
- Probabilistic algorithms:
 - Assume some probabilistic distribution of the instances.
- Randomized algorithms/heuristics:
 - Make use of a randomizer/heuristic:
 - No guarantee of performance.
 - Simulated annealing, genetic algorithms, etc.
- *EXP*-algorithms/branch & bound/exhaustive:
 - Feasible only when the problem is small.

Page	File	Licensing	Source/ author
3			"Alan Turing", Source: http://www.ieee.org/portal/cms_docs_sscs/08Spring/KFig6_turing.jpg , Date:2013/03/06, Fair use under copyright law 46,52,65.
3			"The Turing Machine", Source: http://www.yorku.ca/lbianchi/ sts3700b/lecture14a.html, Date:2013/03/06, Fair use under copy- right law 46,52,65.

