
Introduction to Computer Science
Lecture 6: Programming Languages

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)
Department of Electrical Engineering

National Taiwan University

tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

Tian-Li Yu Programming Languages 1 / 45

mailto:tianliyu@cc.ee.ntu.edu.tw
creativecommons.org/licenses/by-nc-sa/3.0/tw/deed.zh_TW

Programming Languages and Paradigms

PL Generations

1st 2nd 3rd 4th −−−−−−−−−−−−−−−→

Machine
Instructions

Assembly
(Mnemonic

system of MIs)

Fortran
Cobol
Basic
C/C++
Java

SQL
SAS

Tian-Li Yu Programming Languages 2 / 45

Programming Languages and Paradigms

Assembler: Translating MIs to Assembly

1st

Machine
instructions

2nd

Assembly

156C −−−−−−−−−−−−−−−−→ LD R5, Price
166D −−−−−−−−−−−−−−−−→ LD R6, ShippingCharge
5056 −−−−−−−−−−−−−−−−→ ADDI R0, R5, R6
306E −−−−−−−−−−−−−−−−→ ST R0, TotalCost
C000 −−−−−−−−−−−−−−−−→ HTL

Mnemonic names for op-codes

Identifiers: Descriptive names for memory
locations, chosen by the programmer

Tian-Li Yu Programming Languages 3 / 45

Programming Languages and Paradigms

3rd Generation Languages (3GL)

Characteristics of assembly
- Machine dependent
- One-to-one mapping
- Assembler

High-level primitives
Machines independent (virtually)
One primitive to many MI mapping
Compiler & interpreter

Tian-Li Yu Programming Languages 4 / 45

Programming Languages and Paradigms

Languages and Issues

Natural vs. formal languages
- Formal language→ formal grammar

Portability
- Theoretically: different compilers
- Reality: Minor modifications

Tian-Li Yu Programming Languages 5 / 45

Programming Languages and Paradigms

Programming Paradigms

Functional

Object-oriented

Imperative

Declarative

LISP ML

Machine

Languages

Schema

Smalltalk Visual Basic Java

Ada

APL

C

Pascal

Prolog

BASIC

GPSS

FORTRAN

COBOL ALGOL

C++ C#

1950 1960 1970 1980 1990 2000

Tian-Li Yu Programming Languages 6 / 45

Programming Languages and Paradigms

Imperative vs. Declarative

Imperative paradigm
- Procedural
- Approaching a problem by finding an algorithm to solve the problem.

Declarative paradigm
- Implemented a general problem solver
- Approaching a problem by finding a formal description of the problem.
- Will talk more about this later.

Tian-Li Yu Programming Languages 7 / 45

Programming Languages and Paradigms

Functional Paradigm

Find_diff

New_balance

Old_balance Credits DebitsInputs:

Output:

Find_sum Find_sum

Tian-Li Yu Programming Languages 8 / 45

Programming Languages and Paradigms

Functional vs. Imperative

(Find diff (Find sum Old balance Credits) (Find sum Debits))

Temp balance← Old balance + Credit
Total debits← sum of all Debits
Balance← Temp balance − Total debits

(Find Quotiant (Find sum Numbers) (Find count Numbers))

Sum← sum of all Numbers
Count← # of Numbers
Quotiant← Sum / Count

Tian-Li Yu Programming Languages 9 / 45

Programming Languages and Paradigms

Object-Oriented Paradigm

OOP (object-oriented programming)
Abstraction
Information hiding

- Encapsulation
- Polymorphism

Inheritance

References:
- http://www.codeproject.com/KB/architecture/OOP_Concepts_and_manymore.aspx
- http://en.wikipedia.org/wiki/Object-oriented_programming

Tian-Li Yu Programming Languages 10 / 45

http://www.codeproject.com/KB/architecture/OOP_Concepts_and_manymore.aspx
http://en.wikipedia.org/wiki/Object-oriented_programming

Imperative Paradigm

More about Imperative Paradigm

Variables and data types
Data structure
Constants and literals
Assignment and operators
Control
Comments

Tian-Li Yu Programming Languages 11 / 45

Imperative Paradigm

Variables and Data Types

Integer
Real (floating-point)
Character
Boolean

FORTRAN
INTEGER a, b
REAL c, d
BYTE e, f
LOGICAL g, h

Pascal
a, b: integer;
c, d: real;
e, f: char;
g, h: boolean;

C/C++ (Java)
int a, b;
float c, d;
char e, f;
bool g, h;

Tian-Li Yu Programming Languages 12 / 45

Imperative Paradigm

Data Structure

Homogeneous array
Heterogeneous array

FORTRAN INTEGER a(6,3)

Pascal a: array[0..5,0..2] of integer;

C/C++ int a[5][2];

C/C++
struct{

char Name[25];
int Age;
float SkillRating;

} Employee;

Tian-Li Yu Programming Languages 13 / 45

Imperative Paradigm

Constant and Literals

a← b + 645;
- 645 is a literal

const int a=645;
final int a=645;

A constant cannot be a l-value.
- a=b+c;

Tian-Li Yu Programming Languages 14 / 45

Imperative Paradigm

Assignment and Operators

APL
a <- b + c;

Ada, Pascal
a := b + c;

C/C++ (Java)
a = b + c;

Operator precedence
Operator overloading

Tian-Li Yu Programming Languages 15 / 45

Imperative Paradigm

Control

Old-fashion: goto
goto 40

20 print "passed."

goto 70

40 if (grade < 60) goto 60

goto 20

60 print "failed."

70 stop

Not recommended in modern programming
Modern programming

if (grade < 60)
then print "failed."
else print "passed."

Tian-Li Yu Programming Languages 16 / 45

Imperative Paradigm

Control Structures

S1 S2

Condition

false

Condition

true

B?

if (B) S1
else S2;

S1

Condition

false

Condition

true

B?

while (B)
S1;

S2 S3

What

is the value

of N?

N = C2 N = C3N = C1

S1

switch (N)
{ case C1: S1;break;

case C2: S2;break;
case C3: S3;break;

};

Tian-Li Yu Programming Languages 17 / 45

Imperative Paradigm

Control Structures (contd.)

Body
Assign Count the

value Count + 1

Assign Count the value 1

Count < 4 ?

True

False

for (int Count = 1; Count < 4; Count++)
body;

Tian-Li Yu Programming Languages 18 / 45

Imperative Paradigm

Comments

C/C++, Java

a = b + c; // This is an end-of-line comment

/*
This is a
block comment

*/
a = b + c;

/**
This is a
documentation
comment

*/
a = b + c;

Tian-Li Yu Programming Languages 19 / 45

Imperative Paradigm

Calling Procedures

Calling

program unit

Procedure

Calling program

unit continues

Procedure is

excuted.

Control is

transferred

to procedure

Control is returned to

calling enviroment when

procedure is completed.

Calling program

unit requests

procedure.

Tian-Li Yu Programming Languages 20 / 45

Imperative Paradigm

Terminology

Starting the head with the term “void” is

the way that a C programmer specifies that

the program unit is a procedure rather

than a function. We will learn about functions

shortly.

This declares a local variable

named Year.

These statements describe how the

populations are to be computed and

stored in the global array named Population.

The former parameter list. Note

that C, as with many programming

languages, requires that the data

type of each parameter be specified.

void ProjectPopulation (float GrowthRate){

int Year;

Population[0] = 100.0;

for (Year = 0; Year =< 10; Year++)

 Population[Year+1] = Population[Year] + (Population[Year]*GrowthRate);

}

Tian-Li Yu Programming Languages 21 / 45

Imperative Paradigm

Terminology (contd.)

Procedure’s header
Local vs. global variables
Formal vs. actual parameters
Passing parameters

- Call by value (passed by value)
- Call by reference (passed by reference)
- Call by address: variant of call-by-reference.

Tian-Li Yu Programming Languages 22 / 45

Imperative Paradigm

Call by Value

procedure Demo(Formal)
Formal ← Formal + 1;

Demo(Actual);

a. When the procedure is called, a copy of data
is given to the procedure
Calling environment

5

Procedure’s environment

5

b. and the procedure manipulates its copy.
Calling environment

5

Procedure’s environment

6

c. Thus, when the procedure has terminated, the
calling environment has not changed.
Calling environment

5

Tian-Li Yu Programming Languages 23 / 45

Imperative Paradigm

Call by Reference

procedure Demo(Formal)
Formal ← Formal + 1;

Demo(Actual);

C/C++

void Demo(int& Formal){
Formal = Formal + 1;

}

a. When the procedure is called, the formal parameter
becomes a reference to the actual parameter.
Calling environment

Actual

Procedure’s environment

5

Formal

b. Thus, changes directed by the procedure are made
to the actual parameter
Calling environment

Actual

Procedure’s environment

6

Formal

c. and are, therefore, preserved after the procedure
has terminated.
Calling environment

Actual

6

Tian-Li Yu Programming Languages 24 / 45

Imperative Paradigm

Functions vs. Procedures

A program unit similar to a procedure unit except that a value is transferred back to
the calling program unit as “the value of the function.”

The function header begins with

the type of the data that will

be returned.

This declares a local variable

named Volume.

Terminate the function and return the

value of the variable Volume

Compute the volume of the cylinder

float CylinderVolumn (float Radius, float Height){

float Volume;

Volume = 3.14 * Radius * Radius * Height;

return Volume;

}

Tian-Li Yu Programming Languages 25 / 45

Imperative Paradigm

The Translation Process

Lexical analyzer: identifying tokens.
Parser: identifying syntax & semantics.

Lexical

analyzer

Source

program

Object

program
Parser

Code

generator

Tian-Li Yu Programming Languages 26 / 45

Imperative Paradigm

Syntax Diagrams for Algebra
Expression

Term

Expression

-

+

Term

Factor

Term

x

+

Factor

x

y

z

Tian-Li Yu Programming Languages 27 / 45

Imperative Paradigm

Grammar for Algebra

Expression→ Term | Term + Expression
| Term - Expression

Term→ Factor | Factor * Term | Factor / Term
Factor→ x | y | z

Starting: Expression
Nonterminals: Expression, Term, Factor
Terminals: x, y, z

Tian-Li Yu Programming Languages 28 / 45

Imperative Paradigm

Parse Tree

x + y × z

+

x

y

z

x

Expression

ExpressionTerm

Factor

Factor

Factor

Term

Term

Tian-Li Yu Programming Languages 29 / 45

Imperative Paradigm

Ambiguity

if B1 then if B2 then S1 else S2

Statement

Statement

Statement

Statement
Boolean

expression

if

B1

B2 S1

then

Boolean

expression

if then

else

Statement

Statement

Statement Statement

Boolean

expression

if

B1

B2 S1 S2

then

Boolean

expression

if then else

Tian-Li Yu Programming Languages 30 / 45

Imperative Paradigm

Code Generation

Coercion: implicit conversion between data types

Strongly typed: no coercion, data types have to agree with each other.

Code optimization
- x = y + z;
- w = x + z;

- w = y + (z << 1);

Tian-Li Yu Programming Languages 31 / 45

Object-Oriented Paradigm

OOP

Object
- Active program unit containing both data and procedures

Class
- A template from which objects are constructed
- An object is an instance of the class.

Instance variables & methods (member functions)
Constructors

- Special method used to initialize a new object when it is first constructed.

Destructors vs. garbage collection

Tian-Li Yu Programming Languages 32 / 45

Object-Oriented Paradigm

An Example of Class

Instance variable

methods

Constructor assigns a value

to Remaining Power when

an object is created.

class LaserClass

{ int RemainingPower;

 LaserClass (InitialPower)

 { RemainingPower = InitialPower;

 }

 void turnRight ()

 { ... }

 void turnLeft ()

 { ... }

 void fire ()

 { ... }

}

Tian-Li Yu Programming Languages 33 / 45

Object-Oriented Paradigm

Encapsulation

Encapsulation
- A way of restricting access to the internal components of an object
- Bundling of data with the methods operating on that data.

Examples: private vs. public, getter & setter

Tian-Li Yu Programming Languages 34 / 45

Object-Oriented Paradigm

Polymorphism

Polymorphism
- Allows method calls to be interpreted by the object that receives the call.
- Allows different data types to be handled using a uniform interface.

Circle();
Rectangle();

Circle circle;
Rectangle rect;

circle.draw();
rect.draw();

Tian-Li Yu Programming Languages 35 / 45

Object-Oriented Paradigm

Inheritance

Inheritance
- Allows new classes to be defined in terms of previously defined classes.

Class Base;
Class Circle : Base;
Class Rectangle : Base;

Base *base;
Circle circle;
Rectangle rect;

base = & circle;
base -> draw();
base = & rect;
base -> draw();

Tian-Li Yu Programming Languages 36 / 45

Object-Oriented Paradigm

Concurrency
Mutual Exclusion: A method for ensuring that data can be accessed by only one process at a time.

Monitor: A data item augmented with the ability to control access to itself

Calling

program unit

Procedureprocedure is

activated.

Both units

excute

simultaneiously.

Calling program

unit requests

procedure.

Tian-Li Yu Programming Languages 37 / 45

Declarative Programming

Declarative Programming

Resolution
- Combining two or more statements to produce a new statement (that is a logical

consequence of the originals).
- (P OR Q) AND (R OR ¬Q) resolves to (P OR R)
- Resolvent: A new statement deduced by resolution
- Clause form: A statement whose elementary components are connected by OR

Unification
- Assigning a value to a variable so that two clauses would be the same.
- Unify(Father(Mark,John), Father(x,John)) results in x is Mark.

Tian-Li Yu Programming Languages 38 / 45

Declarative Programming

Proof by Resolution (Refutation)

We know that (P OR Q) AND (R OR ¬Q) AND (¬R) is true (KB, knowledge base).

We want to prove that P is true.

Prove by showing that KB AND ¬p is unsatisfiable (empty clause).

P OR Q

P OR R

R OR Q R P

P

empty clause

Tian-Li Yu Programming Languages 39 / 45

Declarative Programming

Prolog

Variables: first letter capitalized (exactly contrary to common logics).
Constants: first letter uncapitalized.
Facts:

- Consists of a single predicate
- predicateName(arguments).

parent(bill, mary).

Rules:
- conclusion :- premise.

:- means “if”
- faster(X,Z) :- faster(X,Y), faster(Y,Z).

Operators:
“is”, ==,
=, <, >, +, -, *, /, =>, =<

Tian-Li Yu Programming Languages 40 / 45

Declarative Programming Prolog

Gnu Prolog

Gnu prolog http://www.gprolog.org/

Interactive mode
- Under the prompt | ?- , type [user].
- When finished, type Ctrl-D

Comments
- /* */ or %

Chinese incompatible.

You may consult *.pl (a pure text file)

Tian-Li Yu Programming Languages 41 / 45

http://www.gprolog.org/

Declarative Programming Prolog

Prolog Examples

suejohn

marybill

female(mary).
female(sue).
male(bill).
male(john).

parent(mary,john).
parent(bill,john).
parent(mary,sue).
parent(bill,sue).

mother(X,Y):−female(X),parent(X,Y).
father(X,Y):−male(X),parent(X,Y).

son(X,Y):−male(X),parent(Y,X).
daughter(X,Y):−female(X),parent(Y,X).

sibling(X,Y):−X\=Y,parent(Z,X),parent(Z,Y).

Tian-Li Yu Programming Languages 42 / 45

Declarative Programming Prolog

Prolog Examples

Factorial again.
If we want Prolog to compute factorials, we need to tell it what factorials are.

factorial(0,1).

factorial(N,F) :−
N>0,
N1 is N−1,
factorial(N1,F1),
F is N * F1.

| ?− factorial(5,W).
W=120 ?

Tian-Li Yu Programming Languages 43 / 45

Declarative Programming Prolog

Fibonacci Revisited

f(0,1).
f(1,1).

f(N,F) :−
N>0,
N1 is N−1,
N2 is N−2,
f(N1,F1),
f(N2,F2),
F is F1 + F2.

f(N,F) :−c(N, , ,F).

c(0,0,0,1).
c(1,0,1,1).
c(2,1,1,2).
c(N,P1,P2,P3):−

N>2,
N1 is N−1,
c(N1, P0, P1, P2),
P2 is P0+P1,
P3 is P1+P2.

How about f(40,W)?

Tian-Li Yu Programming Languages 44 / 45

Declarative Programming Prolog

Ordered Clauses

factorial(0,1).

factorial(N,F) :−
N>0,
factorial(N1,F1),
N1 is N−1,
F is N * F1.

?−factorial(3,W).

This wouldn’t work, why?

Try these commands:
listing.

trace.

notrace.

Tian-Li Yu Programming Languages 45 / 45

	Programming Languages and Paradigms
	Imperative Paradigm
	Object-Oriented Paradigm
	Declarative Programming
	Prolog

