
Introduction to Computer Science
Lecture 5: Algorithms

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)
Department of Electrical Engineering

National Taiwan University

tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

Tian-Li Yu Algorithms 1 / 41

mailto:tianliyu@cc.ee.ntu.edu.tw
creativecommons.org/licenses/by-nc-sa/3.0/tw/deed.zh_TW


Algorithms

Definitions

Algorithm: ordered set of unambiguous, executable steps that defines a terminating
process.

Program: formal representation of an algorithm.

Process: activity of executing a program.

Primitives, programming languages.

Abstraction
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Algorithms

Folding a Bird

Refer to figure 5.2 in Computer Science An Overview 11th Edition.
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Algorithms

Origami Primitives

Refer to figure 5.3 in Computer Science An Overview 11th Edition.
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Algorithms

Algorithm Representation

Flowchart

Popular in 50s and 60s
Overwhelming for complex
algorithms

Pseudocode

A loosen version of formal
programming languages

Buy new lamp

Replace bulb
Bulb

burned out?

Lamp doesn’t work

Lamp 

plugged in? Plug in lamp
No

No

Yes
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Algorithms

Pseudocode Primitives

Assignment
name ← expression

Conditional selection
if (condition) then (activity)

Repeated execution
while (condition) do (activity)

Procedure
procedure name

procedure Greetings
Count ← 3
while (Count > 0) do

(print the message “Hello” and

Count ← Count − 1)
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Problem Solving

Pólya’s Problem Solving Steps

How to Solve It by George Pólya, 1945.

1 Understand the problem.

2 Devise a plan for solving the problem.

3 Carry out the plan.

4 Evaluate the solution for accuracy and its potential as a tool
for solving other problems.
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Problem Solving

Problem Solving

Top-down

Stepwise refinement
Problem decomposition

Bottom-up

Both methods often complement each other

Usually,

planning → top-down
implementation → bottom-up
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Problem Solving Iterations

Iterations

Loop control

Initialize: Establish an initial state that will be modified
toward the termination condition

Test: Compare the current state to the termination
condition and terminate the repetition if equal

Modify: Change the state in such a way that it moves
toward the termination condition
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Problem Solving Iterations

Loops

Pre-test
(while. . . )

Activity

Test

condition

Condition

false

Condition

true

Post-test
(do. . . while, repeat. . . until)

Activity

Test

condition
Condition

false
Condition

true
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Problem Solving Insertion Sort

Insertion Sort
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Problem Solving Insertion Sort

Pseudocode for Insertion Sort

procedure InsertionSort (List)

1 N ← 2
2 while (the value of N does not exceed the length of List) do
3 (Select the N-th entry in List as the pivot entry
4 Move the pivot to a temporary location leaving a hole in List
5 while (there is a name above the hole and that name is greater

than the pivot) do
6 (move the name above the hole down into the hole leaving a

hole above the name)
7 Move the pivot entry into the hole in List
8 N ← N + 1
9 )
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Problem Solving Recursion

Binary Search

Original list First sublist Second sublist
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Problem Solving Recursion

Pseudocode for Binary Search

procedure BinarySearch (List, TargetValue)

1 if (List empty) then
2 (Report that the search failed.)
3 else (
4 Select the “middle” entry in List to be the TestEntry
5 Execute the block of instructions below that is associated with the appropriate

case.
6 case 1: TagetValue = TestEntry
7 (Report that the search succeeded.)
8 case 2: TagetValue < TestEntry
9 (Search the portion of List preceding TestEntry for TargetValue, and

report the result of that search.)
10 case 3: TagetValue > TestEntry
11 (Search the portion of List succeeding TestEntry for TargetValue, and

report the result of that search.)
12 ) end if
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Problem Solving Recursion

Recursive Problem Solving (contd.)

Factorial int factorial (int x) {
if (x==0) return 1;
return x ∗ factorial(x−1);

}

Do not abuse
Calling functions takes a long time
Avoid tail recursions

int factorial (int x) {
int product = 1;
for (int i=1; i<=x; ++i)

product ∗= i;
return product;

}

int Fibonacci (int x) {
if (x==0) return 0;
if (x==1) return 1;
return Fibonacci(x−2) + Fibonacci(x−1);

}
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Dynamic Programming

Divide and Conquer vs. Dynamic Programming

Divide and conquer (D&C):

Subproblems
Top-down
Binary search, merge sort, ...

Dynamic programming (DP):

Subprograms share subsubproblems
Bottom-up
Shortest path, matrix-chain multiplication, ...
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Dynamic Programming Shortest Path

Shortest Path

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )

A

B C

D E
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5

3

6

A:3
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Dynamic Programming Shortest Path

Shortest Path (contd.)

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )
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Dynamic Programming Shortest Path

Shortest Path (contd.)

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )
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Dynamic Programming Shortest Path

Shortest Path (contd.)

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )
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Dynamic Programming Shortest Path

Shortest Path (contd.)

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )
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Dynamic Programming Matrix-Chain Multiplication

Matrix-Chain Multiplication

Matrices: A : p × q; B : q × r

Then C = A · B is a p × r matrix.

Ci,j =
∑q

k=1 Ai,k · Bk,j

Time complexity: pqr scalar multiplications

The matrix-chain multiplication problem

Given a chain < A1, A2, ..., An > of n matrices, which Ai is of dimension pi−1 × pi ,
parenthesize properly to minimize # of scalar multiplications.
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Dynamic Programming Matrix-Chain Multiplication

Matrix-Chain Multiplication

(p × q) · (q × r) → (p × r)
(pqr) scalar multiplications

A1, A2, A3 : (10× 100), (100× 5), (5× 50)

(A1A2)A3 → (10× 100× 5) + (10× 5× 50) = 7500

A1(A2A3) → (100× 1000× 50) + (1000× 50× 50) = 75000

4 matrices:
((A1A2)A3)A4

A1(A2A3)A4

(A1A2)(A3A4)
A1(A2(A3A4))

Tian-Li Yu Algorithms 23 / 41



Dynamic Programming Matrix-Chain Multiplication

The Minimal # of Multiplications

m[i , j ]: minimal # of multiplications to compute matrix Ai ,j = AiAi+1...Aj , where
1 ≤ i ≤ j ≤ n.

m[i , j ] =

{
0 , i = j

mink (m[i , k] + m[k + 1, j ] + pi−1pkpj) , i 6= j
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Dynamic Programming Matrix-Chain Multiplication

Bottom-Up DP

A1 : 7× 3

A2 : 3× 1

A3 : 1× 2

A4 : 2× 4

p0 = 7

p1 = 3

p2 = 1

p3 = 2

p4 = 4

m[i , i ] = 0

m[1, 2] = 0 + 0 + 7× 3× 1 = 21

m[2, 3] = 6

m[3, 4] = 8

m[1, 3] = 35

min {21 + 0 + 7× 1× 2, 0 + 6 + 7× 3× 2}

m[2, 4] = 20
min {6 + 0 + 3× 2× 4, 0 + 8 + 3× 1× 4}
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Dynamic Programming Matrix-Chain Multiplication

Bottom-Up DP (contd.)

A1 : 7× 3

A2 : 3× 1

A3 : 1× 2

A4 : 2× 4

p0 = 7

p1 = 3

p2 = 1

p3 = 2

p4 = 4

m[1, 4] = min{
m[1, 1] + m[2, 4] + 7× 3× 4,
m[1, 2] + m[3, 4] + 7× 1× 4,
m[1, 3] + m[4, 4] + 7× 2× 4}

= 57

Ans: (A1A2)(A3A4)
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Dynamic Programming Matrix-Chain Multiplication

Table Filling

A1 : 7× 3

A2 : 3× 1

A3 : 1× 2

A4 : 2× 4

p0 = 7

p1 = 3

p2 = 1

p3 = 2

p4 = 4

A
1

A
2

A
3

A
4

0 0 0 0

21 6 8

35 20

57
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Top-down vs. Botton-up

Top-Down Manner (Binary Search)

Full list

First half list Second half list

First quarter Second quarter
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Top-down vs. Botton-up

Bottom-up Manner (Shortest Path)

Two adjacent nodes

Three adjacent nodes

Four adjacent nodes
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Analyzing Algorithms Efficiency

Algorithm Efficiency

Number of instructions executed

Execution time

What about on different machines?

O, Ω, Θ notations

Pronunciations: big-o, big-omega, big-theta
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Analyzing Algorithms Efficiency

Asymptotic Analysis

Exact analysis is often difficult and tedious.

Asymptotic analysis emphasizes the behavior of the algorithm when n tends to infinity.

Asymptotic

Upper bound
Lower bound
Tight bound

n

T(n) asymptotic

upper bond

asymptotic

lower bond
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Analyzing Algorithms Efficiency

Big-O

O(g(n)) = {f(n)| ∃c > 0, n0 > 0 s.t. ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n)}

Asymptotic upper bound

If f(n) is a member of the set of
O(g(n)), we write f(n) = O(g(n)).

Examples
100n = O(n2)
n100 = O(2n)
2n + 100 = O(n)

n
n0

f(n)

c g(n)

f(n) = O(g(n))
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Analyzing Algorithms Efficiency

Big-Omega

Ω(g(n)) = {f(n)| ∃c > 0, n0 > 0 s.t.∀n ≥ n0, 0 ≤ cg(n) ≤ f(n)}

Asymptotic lower bound

If f(n) is a member of the set of
Ω(g(n)), we write f(n) = Ω(g(n)).

Examples
0.01n2 = Ω(n)
2n = Ω(n100)
2n + 100 = Ω(n)

n
n0

f(n)

c g(n)

f(n) = Ω(g(n))
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Analyzing Algorithms Efficiency

Big-Theta

Θ(g(n)) = {f(n)| ∃c1, c2, n0 > 0 s.t. ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

Asymptotic tight bound

If f(n) is a member of the set of
Θ(g(n)), we write f(n) = Θ(g(n)).

Examples
0.01n2 = Θ(n2)
2n + 100 = Θ(n)
n + log n = Θ(n)

n
n0

f(n)

c g(n)
2

c g(n)
1

f(n) = Θ(g(n))

Theorem

f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n))
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Analyzing Algorithms Efficiency

Efficiency Analysis

Best, worst, average cases

Comparisons made for each pivot

4th pivot

Barbara

Carol

David

Elaine

Alfred
7

8

9

10

3rd pivot

Carol

David

Elaine

Barbara

Alfred

4

5

6

2nd pivot

David

Elaine

Carol

Barbara

Alfred

2

3

Sorted list

Alfred

Barbara

Carol

Elaine

David

Initial list

Elaine

David

Carol

Barbara

Alfred

1st pivot

Elaine

David

Carol

Barbara

Alfred

1

Worst case for insertion sort

Worst: (n2 − n)/2, best: (n − 1), average: Θ(n2)
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Analyzing Algorithms Correctness

Software Verification

Traveler’s gold chain

Cut

Cut Cut Cut
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Analyzing Algorithms Correctness

Assertion for “While”

Body

Modifiy

Initialize

Test

condition

Condition

false

Condition

true Loop invariant

and terminate condition

Loop invariant

Precondition

Precondition

Loop invariant

Termination condition
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Analyzing Algorithms Correctness

Correct or Not?

Count ← 0
Remainder ← Dividend
repeat (Remainder ← Remainder − Divisor

Count ← Count + 1)
until (Remainder < Divisor)
Quotient ← Count

Problematic

Remainder > 0?

Preconditions:

Dividend > 0
Divisor > 0
Count = 0
Remainder = Dividend

Loop invariants:

Dividend > 0
Divisor > 0
Dividend =
Count · Divisor + Remainder

Termination condition:

Remainder < Divisor
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Analyzing Algorithms Correctness

Verification of Insertion Sort

Loop invariant of the outer loop

Each time the test for termination is performed, the names preceding the N-th entry form a
sorted list

Termination condition

The value of N is greater than the length of the list.

If the loop terminates, the list is sorted

Tian-Li Yu Algorithms 39 / 41



Analyzing Algorithms Correctness

Final Words for Software Verification

In general, not easy.

Need a formal PL with better properties.
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Analyzing Algorithms Correctness

License

Page File Licensing Source/ author

7

”George Plya ca 1973”.,Author: Thane Plambeck from
Palo Alto, California, Original ca 1973, scanned March
14, 2007 Source: http://en.wikipedia.org/wiki/File:

George_P%C3%B3lya_ca_1973.jpg, Date:2013/05/14, Licensed
under the terms of the cc-by-2.0.
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