Introduction to Computer Science Lecture 5: Algorithms

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL) Department of Electrical Engineering National Taiwan University

tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

Definitions

- Algorithm: ordered set of unambiguous, executable steps that defines a terminating process.
- Program: formal representation of an algorithm.
- Process: activity of executing a program.
- Primitives, programming languages.
- Abstraction

Algorithms

Folding a Bird

Refer to figure 5.2 in Computer Science An Overview 11th Edition.

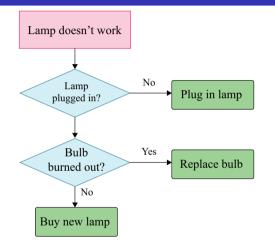
Algorithms

Origami Primitives

Refer to figure 5.3 in Computer Science An Overview 11th Edition.

Algorithm Representation

- Flowchart
 - Popular in 50s and 60s
 - Overwhelming for complex algorithms
- Pseudocode
 - A loosen version of formal programming languages



Pseudocode Primitives

- Assignment name ← expression
- Conditional selection
 if (condition) then (activity)
- Repeated execution while (condition) do (activity)
- Procedure
 procedure name

procedure GREETINGS Count $\leftarrow 3$ while (Count > 0) do (print the message "Hello" and Count \leftarrow Count -1)

Pólya's Problem Solving Steps

How to Solve It by George Pólya, 1945.

- **1** Understand the problem.
- 2 Devise a plan for solving the problem.
- Out the plan.
- Evaluate the solution for accuracy and its potential as a tool for solving other problems.

Problem Solving

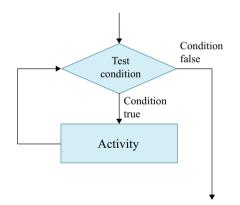
- Top-down
 - Stepwise refinement
 - Problem decomposition
- Bottom-up
- Both methods often complement each other
- Usually,
 - $\bullet \ \mathsf{planning} \to \mathsf{top-down}$
 - $\bullet \ \ implementation \rightarrow bottom-up$

Iterations

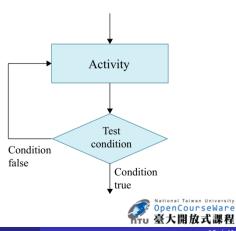
- Loop control
 - **Initialize:** Establish an initial state that will be modified toward the termination condition
 - **Test:** Compare the current state to the termination condition and terminate the repetition if equal
 - **Modify:** Change the state in such a way that it moves toward the termination condition

Iterations

Loops

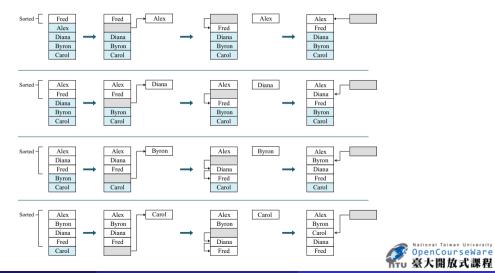


Post-test (do...while, repeat...until)



Insertion Sort

Insertion Sort



Algorithms

Pseudocode for Insertion Sort

procedure InsertionSort (List)

1	Ν	\leftarrow	2	
---	---	--------------	---	--

- 2 while (the value of *N* does not exceed the length of *List*) do
- 3 (Select the *N*-th entry in *List* as the pivot entry
- 4 Move the pivot to a temporary location leaving a hole in *List*
- 5 **while** (there is a name above the hole and that name is greater than the pivot) **do**
 - (move the name above the hole down into the hole leaving a hole above the name)
- 7 Move the pivot entry into the hole in *List*

8
$$N \leftarrow N + 1$$

9

6

Binary Search

Original list	First sublist	Second sublist
Alice Bob Carol David Elaine Fred George Harry Irene John Kelly Larry Mary Nancy Oliver	Irene John Kelly Larry Mary Nancy Oliver	Irene John Kelly

Pseudocode for Binary Search

procedure BINARYSEARCH (*List*, *TargetValue*)

1	if (<i>List</i> empty) then		
2	(Report that the search failed.)		
3	else (
4	Select the "middle" entry in List to be the TestEntry		
5	Execute the block of instructions below that is associated with the appropriate		
	case.		
6	case 1: TagetValue = TestEntry		
7	(Report that the search succeeded.)		
8	case 2: TagetValue < TestEntry		
9	(Search the portion of <i>List</i> preceding <i>TestEntry</i> for <i>TargetValue</i> , and		
	report the result of that search.)		
10	case 3: TagetValue > TestEntry		
11	(Search the portion of <i>List</i> succeeding <i>TestEntry</i> for <i>TargetValue</i> , and		
	report the result of that search.)		
12) end if		

Recursion

Recursive Problem Solving (contd.)

Eactorial

```
int factorial (int x) {
    if (x==0) return 1;
    return x * factorial(x-1);
}
```

- Do not abuse
 - Calling functions takes a long time
 - Avoid tail recursions

```
int factorial (int x) {
    int product = 1;
    for (int i=1; i < =x; ++i)
         product *= i:
    return product;
```

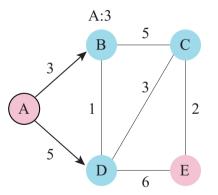
```
int Fibonacci (int x) {
    if (x==0) return 0;
    if (x==1) return 1;
    return Fibonacci(x-2) + Fibonacci(x-1);
```


Divide and Conquer vs. Dynamic Programming

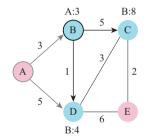
- Divide and conquer (D&C):
 - Subproblems
 - Top-down
 - Binary search, merge sort, ...
- Dynamic programming (DP):
 - Subprograms share subsubproblems
 - Bottom-up
 - Shortest path, matrix-chain multiplication, ...

Shortest Path

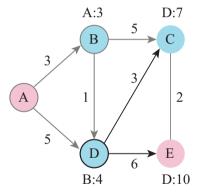
$$Shortest_{AE} = \min_{i \in \{A,B,C,D,E\}}(Shortest_{Ai} + Shortest_{iE})$$



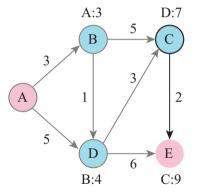
$$Shortest_{AE} = \min_{i \in \{A,B,C,D,E\}}(Shortest_{Ai} + Shortest_{iE})$$



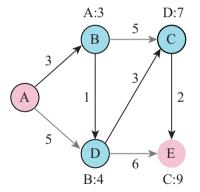
$$\mathit{Shortest}_{\mathit{AE}} = \min_{i \in \{\mathit{A}, \mathit{B}, \mathit{C}, \mathit{D}, \mathit{E}\}}(\mathit{Shortest}_{\mathit{Ai}} + \mathit{Shortest}_{\mathit{iE}})$$



$$Shortest_{AE} = \min_{i \in \{A,B,C,D,E\}}(Shortest_{Ai} + Shortest_{iE})$$



$$Shortest_{AE} = \min_{i \in \{A,B,C,D,E\}}(Shortest_{Ai} + Shortest_{iE})$$



Matrix-Chain Multiplication

- Matrices: $A : p \times q$; $B : q \times r$
 - Then $C = A \cdot B$ is a $p \times r$ matrix.

 $C_{i,j} = \sum_{k=1}^{q} A_{i,k} \cdot B_{k,j}$

- Time complexity: *pqr* scalar multiplications
- The matrix-chain multiplication problem
 - Given a chain < A₁, A₂, ..., A_n > of n matrices, which A_i is of dimension p_{i−1} × p_i, parenthesize properly to minimize # of scalar multiplications.

Matrix-Chain Multiplication

- $(p \times q) \cdot (q \times r) \rightarrow (p \times r)$ • (pqr) scalar multiplications
- A_1, A_2, A_3 : (10 × 100), (100 × 5), (5 × 50)
- $(A_1A_2)A_3 \rightarrow (10 \times 100 \times 5) + (10 \times 5 \times 50) = 7500$
- $A_1(A_2A_3) \rightarrow (100 \times 1000 \times 50) + (1000 \times 50 \times 50) = 75000$
- 4 matrices:
 - $((A_1A_2)A_3)A_4$
 - $A_1(A_2A_3)A_4$
 - $(A_1A_2)(A_3A_4)$
 - $A_1(A_2(A_3A_4))$

The Minimal # of Multiplications

• m[i,j]: minimal # of multiplications to compute matrix $A_{i,j} = A_i A_{i+1} \dots A_j$, where $1 \le i \le j \le n$.

$$m[i,j] = \begin{cases} 0 & , i = j \\ \min_k (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j) & , i \neq j \end{cases}$$

Bottom-Up DP

• *A*₁ : 7 × 3

•
$$m[i, i] = 0$$

- $A_2: 3 \times 1$
- $A_3: 1 \times 2$
- $A_4: 2 \times 4$
- $p_0 = 7$
- $p_1 = 3$
- $p_2 = 1$
- $p_3 = 2$
- $p_4 = 4$

- $m[1,2] = 0 + 0 + 7 \times 3 \times 1 = 21$
- m[2,3] = 6
 m[3,4] = 8
 - m[1,3] = 35
 min {21+0+7×1×2,0+6+7×3×2}

•
$$m[2,4] = 20$$

min {6 + 0 + 3 × 2 × 4, 0 + 8 + 3 × 1 × 4

Bottom-Up DP (contd.)

•
$$p_0 = 7$$

A₁:
A₂:
A₃:
A₄:

•
$$p_1 = 3$$

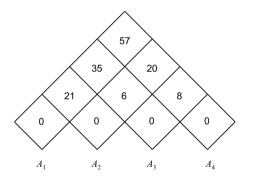
•
$$p_2 = 1$$

•
$$p_3 = 2$$

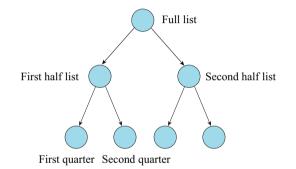
• Ans:
$$(A_1A_2)(A_3A_4)$$

Table Filling

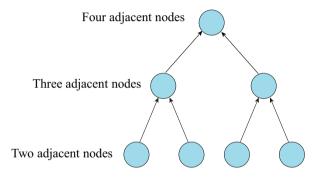
- *A*₁ : 7 × 3
- $A_2: 3 \times 1$
- $A_3: 1 \times 2$
- *A*₄ : 2 × 4
- $p_0 = 7$
- $p_1 = 3$
- $p_2 = 1$
- *p*₃ = 2
- $p_4 = 4$



Top-Down Manner (Binary Search)



Bottom-up Manner (Shortest Path)



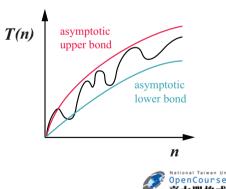
Algorithm Efficiency

- Number of instructions executed
- Execution time
- What about on different machines?
- O, Ω, Θ notations
- Pronunciations: big-o, big-omega, big-theta

Asymptotic Analysis

- Exact analysis is often difficult and tedious.
- Asymptotic analysis emphasizes the behavior of the algorithm when *n* tends to infinity.

- Asymptotic
 - Upper bound
 - Lower bound
 - Tight bound

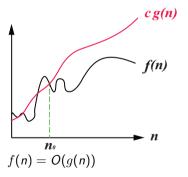


Big-O

$$O(g(n)) = \{f(n) | \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0, \ 0 \le f(n) \le cg(n) \}$$

- Asymptotic upper bound
- If f(n) is a member of the set of O(g(n)), we write f(n) = O(g(n)).
- Examples

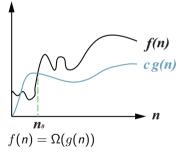
$$\begin{array}{l}
100n = O(n^2) \\
n^{100} = O(2^n) \\
2n + 100 = O(n)
\end{array}$$



Big-Omega

$$\Omega(g(n)) = \{ f(n) | \exists c > 0, n_0 > 0 \text{ s.t.} \forall n \ge n_0, \ 0 \le cg(n) \le f(n) \}$$

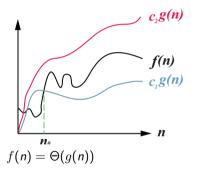
- Asymptotic lower bound
- If f(n) is a member of the set of $\Omega(g(n))$, we write $f(n) = \Omega(g(n))$.
- Examples $0.01n^2 = \Omega(n)$ $2^n = \Omega(n^{100})$ $2n + 100 = \Omega(n)$



Big-Theta

$$\Theta(g(n)) = \{f(n) | \exists c_1, c_2, n_0 > 0 \text{ s.t. } \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

- Asymptotic tight bound
- If f(n) is a member of the set of $\Theta(g(n))$, we write $f(n) = \Theta(g(n))$.
- Examples
 - $0.01n^2 = \Theta(n^2)$ $2n + 100 = \Theta(n)$ $n + \log n = \Theta(n)$



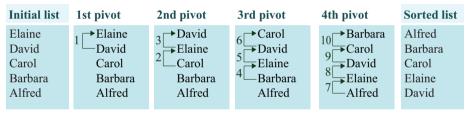
Theorem

$$f(n) = \Theta(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Tian-Li Yu

Efficiency Analysis

• Best, worst, average cases



Comparisons made for each pivot

Worst case for insertion sort

Worst:
$$(n^2 - n)/2$$
, best: $(n - 1)$, average: $\Theta(n^2)$

Correctness

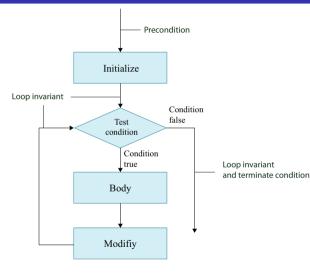
Software Verification

 $m \cap m$

Traveler's gold chain

Cut Cut 0000000

Assertion for "While"



Precondition

- Loop invariant
- Termination condition

Correct or Not?

Count ← 0 Remainder ← Dividend repeat (Remainder ← Remainder - Divisor Count ← Count + 1) until (Remainder < Divisor) Quotient ← Count

Problematic

Remainder > 0?

• Preconditions:

- Dividend > 0
- Divisor > 0
- *Count* = 0
- Remainder = Dividend

• Loop invariants:

- Dividend > 0
- Divisor > 0
- Dividend =

 $Count \cdot Divisor + Remainder$

- Termination condition:
 - *Remainder* < *Divisor*

Verification of Insertion Sort

- Loop invariant of the outer loop
 - Each time the test for termination is performed, the names preceding the *N*-th entry form a sorted list
- Termination condition
 - The value of N is greater than the length of the list.
- If the loop terminates, the list is sorted

Final Words for Software Verification

- In general, not easy.
- Need a formal PL with better properties.

Page	File	Licensing	Source/ author
7	2	COSO Fr NG M	"George Plya ca 1973".,Author: Thane Plambeck from Palo Alto, California, Original ca 1973, scanned March 14, 2007 Source: http://en.wikipedia.org/wiki/File: George_P%C3/B31ya_ca_1973.jpg, Date:2013/05/14, Licensed under the terms of the cc-by-2.0.

