
Introduction to Computer Science
Lecture 5: Algorithms

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)
Department of Electrical Engineering

National Taiwan University

tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

Tian-Li Yu Algorithms 1 / 41

mailto:tianliyu@cc.ee.ntu.edu.tw
creativecommons.org/licenses/by-nc-sa/3.0/tw/deed.zh_TW


Algorithms

Definitions

Algorithm: ordered set of unambiguous, executable steps that defines a terminating
process.

Program: formal representation of an algorithm.

Process: activity of executing a program.

Primitives, programming languages.

Abstraction

Tian-Li Yu Algorithms 2 / 41



Algorithms

Folding a Bird

Refer to figure 5.2 in Computer Science An Overview 11th Edition.

Tian-Li Yu Algorithms 3 / 41



Algorithms

Origami Primitives

Refer to figure 5.3 in Computer Science An Overview 11th Edition.

Tian-Li Yu Algorithms 4 / 41



Algorithms

Algorithm Representation

Flowchart

Popular in 50s and 60s
Overwhelming for complex
algorithms

Pseudocode

A loosen version of formal
programming languages

Buy new lamp

Replace bulb
Bulb

burned out?

Lamp doesn’t work

Lamp 

plugged in? Plug in lamp
No

No

Yes

Tian-Li Yu Algorithms 5 / 41



Algorithms

Pseudocode Primitives

Assignment
name ← expression

Conditional selection
if (condition) then (activity)

Repeated execution
while (condition) do (activity)

Procedure
procedure name

procedure Greetings
Count ← 3
while (Count > 0) do

(print the message “Hello” and

Count ← Count − 1)

Tian-Li Yu Algorithms 6 / 41



Problem Solving

Pólya’s Problem Solving Steps

How to Solve It by George Pólya, 1945.

1 Understand the problem.

2 Devise a plan for solving the problem.

3 Carry out the plan.

4 Evaluate the solution for accuracy and its potential as a tool
for solving other problems.

Tian-Li Yu Algorithms 7 / 41

http://en.wikipedia.org/wiki/File:George_P%C3%B3lya_ca_1973.jpg


Problem Solving

Problem Solving

Top-down

Stepwise refinement
Problem decomposition

Bottom-up

Both methods often complement each other

Usually,

planning → top-down
implementation → bottom-up

Tian-Li Yu Algorithms 8 / 41



Problem Solving Iterations

Iterations

Loop control

Initialize: Establish an initial state that will be modified
toward the termination condition

Test: Compare the current state to the termination
condition and terminate the repetition if equal

Modify: Change the state in such a way that it moves
toward the termination condition

Tian-Li Yu Algorithms 9 / 41



Problem Solving Iterations

Loops

Pre-test
(while. . . )

Activity

Test

condition

Condition

false

Condition

true

Post-test
(do. . . while, repeat. . . until)

Activity

Test

condition
Condition

false
Condition

true

Tian-Li Yu Algorithms 10 / 41



Problem Solving Insertion Sort

Insertion Sort

Fred

Alex

Diana

Byron

Carol

Fred

Alex

Diana

Byron

Carol

Fred Alex

Diana

Byron

Carol

Sorted

Initial list:

Fred

Alex

Diana

Byron

Carol

Sorted list:

Fred

Alex

Diana

Byron

Carol

Fred

Alex

Diana

Byron

Carol

Fred

Alex

Fred

Alex Alex

Diana

Byron

Carol

Diana

Byron

Carol

Sorted

Fred

Diana

Byron

Carol

Fred

Alex

Diana

Byron

Carol

Fred

Alex Alex

Diana

Fred

Alex

Diana

Fred

Diana

Fred

Diana

Byron

Carol

Byron

Carol

Sorted Byron

Byron

Carol

Alex

Carol

Fred

Alex Alex

Diana

Fred

Diana

Byron

Fred

Alex

Diana

Byron Byron

Carol

CarolSorted

Fred

Diana

Carol

Carol

Byron

Alex

Fred

Diana

Carol

Byron

AlexTian-Li Yu Algorithms 11 / 41



Problem Solving Insertion Sort

Pseudocode for Insertion Sort

procedure InsertionSort (List)

1 N ← 2
2 while (the value of N does not exceed the length of List) do
3 (Select the N-th entry in List as the pivot entry
4 Move the pivot to a temporary location leaving a hole in List
5 while (there is a name above the hole and that name is greater

than the pivot) do
6 (move the name above the hole down into the hole leaving a

hole above the name)
7 Move the pivot entry into the hole in List
8 N ← N + 1
9 )

Tian-Li Yu Algorithms 12 / 41



Problem Solving Recursion

Binary Search

Original list First sublist Second sublist

Alice

Bob

Carol

David

Elaine

Fred

George

Harry
Irene

John

Kelly

Larry

Mary

Nancy

Oliver

Irene

John

Kelly

Larry

Mary

Nancy

Oliver

Irene

John

Kelly

Tian-Li Yu Algorithms 13 / 41



Problem Solving Recursion

Pseudocode for Binary Search

procedure BinarySearch (List, TargetValue)

1 if (List empty) then
2 (Report that the search failed.)
3 else (
4 Select the “middle” entry in List to be the TestEntry
5 Execute the block of instructions below that is associated with the appropriate

case.
6 case 1: TagetValue = TestEntry
7 (Report that the search succeeded.)
8 case 2: TagetValue < TestEntry
9 (Search the portion of List preceding TestEntry for TargetValue, and

report the result of that search.)
10 case 3: TagetValue > TestEntry
11 (Search the portion of List succeeding TestEntry for TargetValue, and

report the result of that search.)
12 ) end if

Tian-Li Yu Algorithms 14 / 41



Problem Solving Recursion

Recursive Problem Solving (contd.)

Factorial int factorial (int x) {
if (x==0) return 1;
return x ∗ factorial(x−1);

}

Do not abuse
Calling functions takes a long time
Avoid tail recursions

int factorial (int x) {
int product = 1;
for (int i=1; i<=x; ++i)

product ∗= i;
return product;

}

int Fibonacci (int x) {
if (x==0) return 0;
if (x==1) return 1;
return Fibonacci(x−2) + Fibonacci(x−1);

}

Tian-Li Yu Algorithms 15 / 41



Dynamic Programming

Divide and Conquer vs. Dynamic Programming

Divide and conquer (D&C):

Subproblems
Top-down
Binary search, merge sort, ...

Dynamic programming (DP):

Subprograms share subsubproblems
Bottom-up
Shortest path, matrix-chain multiplication, ...

Tian-Li Yu Algorithms 16 / 41



Dynamic Programming Shortest Path

Shortest Path

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )

A

B C

D E

3

5

1 2

5

3

6

A:3

Tian-Li Yu Algorithms 17 / 41



Dynamic Programming Shortest Path

Shortest Path (contd.)

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )

A

B C

D E

3

5

1 2

5

3

6

A:3

B:4

B:8

Tian-Li Yu Algorithms 18 / 41



Dynamic Programming Shortest Path

Shortest Path (contd.)

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )

A

B C

D E

3

5

1 2

5

3

6

A:3

B:4

D:7

D:10

Tian-Li Yu Algorithms 19 / 41



Dynamic Programming Shortest Path

Shortest Path (contd.)

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )

A

B C

D E

3

5

1 2

5

3

6

A:3

B:4

D:7

C:9

Tian-Li Yu Algorithms 20 / 41



Dynamic Programming Shortest Path

Shortest Path (contd.)

ShortestAE = mini∈{A,B,C ,D,E}(ShortestAi + ShortestiE )

A

B C

D E

3

5

1 2

5

3

6

A:3

B:4

D:7

C:9

Tian-Li Yu Algorithms 21 / 41



Dynamic Programming Matrix-Chain Multiplication

Matrix-Chain Multiplication

Matrices: A : p × q; B : q × r

Then C = A · B is a p × r matrix.

Ci,j =
∑q

k=1 Ai,k · Bk,j

Time complexity: pqr scalar multiplications

The matrix-chain multiplication problem

Given a chain < A1, A2, ..., An > of n matrices, which Ai is of dimension pi−1 × pi ,
parenthesize properly to minimize # of scalar multiplications.

Tian-Li Yu Algorithms 22 / 41



Dynamic Programming Matrix-Chain Multiplication

Matrix-Chain Multiplication

(p × q) · (q × r) → (p × r)
(pqr) scalar multiplications

A1, A2, A3 : (10× 100), (100× 5), (5× 50)

(A1A2)A3 → (10× 100× 5) + (10× 5× 50) = 7500

A1(A2A3) → (100× 1000× 50) + (1000× 50× 50) = 75000

4 matrices:
((A1A2)A3)A4

A1(A2A3)A4

(A1A2)(A3A4)
A1(A2(A3A4))

Tian-Li Yu Algorithms 23 / 41



Dynamic Programming Matrix-Chain Multiplication

The Minimal # of Multiplications

m[i , j ]: minimal # of multiplications to compute matrix Ai ,j = AiAi+1...Aj , where
1 ≤ i ≤ j ≤ n.

m[i , j ] =

{
0 , i = j

mink (m[i , k] + m[k + 1, j ] + pi−1pkpj) , i 6= j

Tian-Li Yu Algorithms 24 / 41



Dynamic Programming Matrix-Chain Multiplication

Bottom-Up DP

A1 : 7× 3

A2 : 3× 1

A3 : 1× 2

A4 : 2× 4

p0 = 7

p1 = 3

p2 = 1

p3 = 2

p4 = 4

m[i , i ] = 0

m[1, 2] = 0 + 0 + 7× 3× 1 = 21

m[2, 3] = 6

m[3, 4] = 8

m[1, 3] = 35

min {21 + 0 + 7× 1× 2, 0 + 6 + 7× 3× 2}

m[2, 4] = 20
min {6 + 0 + 3× 2× 4, 0 + 8 + 3× 1× 4}

Tian-Li Yu Algorithms 25 / 41



Dynamic Programming Matrix-Chain Multiplication

Bottom-Up DP (contd.)

A1 : 7× 3

A2 : 3× 1

A3 : 1× 2

A4 : 2× 4

p0 = 7

p1 = 3

p2 = 1

p3 = 2

p4 = 4

m[1, 4] = min{
m[1, 1] + m[2, 4] + 7× 3× 4,
m[1, 2] + m[3, 4] + 7× 1× 4,
m[1, 3] + m[4, 4] + 7× 2× 4}

= 57

Ans: (A1A2)(A3A4)

Tian-Li Yu Algorithms 26 / 41



Dynamic Programming Matrix-Chain Multiplication

Table Filling

A1 : 7× 3

A2 : 3× 1

A3 : 1× 2

A4 : 2× 4

p0 = 7

p1 = 3

p2 = 1

p3 = 2

p4 = 4

A
1

A
2

A
3

A
4

0 0 0 0

21 6 8

35 20

57

Tian-Li Yu Algorithms 27 / 41



Top-down vs. Botton-up

Top-Down Manner (Binary Search)

Full list

First half list Second half list

First quarter Second quarter

Tian-Li Yu Algorithms 28 / 41



Top-down vs. Botton-up

Bottom-up Manner (Shortest Path)

Two adjacent nodes

Three adjacent nodes

Four adjacent nodes

Tian-Li Yu Algorithms 29 / 41



Analyzing Algorithms Efficiency

Algorithm Efficiency

Number of instructions executed

Execution time

What about on different machines?

O, Ω, Θ notations

Pronunciations: big-o, big-omega, big-theta

Tian-Li Yu Algorithms 30 / 41



Analyzing Algorithms Efficiency

Asymptotic Analysis

Exact analysis is often difficult and tedious.

Asymptotic analysis emphasizes the behavior of the algorithm when n tends to infinity.

Asymptotic

Upper bound
Lower bound
Tight bound

n

T(n) asymptotic

upper bond

asymptotic

lower bond

Tian-Li Yu Algorithms 31 / 41



Analyzing Algorithms Efficiency

Big-O

O(g(n)) = {f(n)| ∃c > 0, n0 > 0 s.t. ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n)}

Asymptotic upper bound

If f(n) is a member of the set of
O(g(n)), we write f(n) = O(g(n)).

Examples
100n = O(n2)
n100 = O(2n)
2n + 100 = O(n)

n
n0

f(n)

c g(n)

f(n) = O(g(n))

Tian-Li Yu Algorithms 32 / 41



Analyzing Algorithms Efficiency

Big-Omega

Ω(g(n)) = {f(n)| ∃c > 0, n0 > 0 s.t.∀n ≥ n0, 0 ≤ cg(n) ≤ f(n)}

Asymptotic lower bound

If f(n) is a member of the set of
Ω(g(n)), we write f(n) = Ω(g(n)).

Examples
0.01n2 = Ω(n)
2n = Ω(n100)
2n + 100 = Ω(n)

n
n0

f(n)

c g(n)

f(n) = Ω(g(n))

Tian-Li Yu Algorithms 33 / 41



Analyzing Algorithms Efficiency

Big-Theta

Θ(g(n)) = {f(n)| ∃c1, c2, n0 > 0 s.t. ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

Asymptotic tight bound

If f(n) is a member of the set of
Θ(g(n)), we write f(n) = Θ(g(n)).

Examples
0.01n2 = Θ(n2)
2n + 100 = Θ(n)
n + log n = Θ(n)

n
n0

f(n)

c g(n)
2

c g(n)
1

f(n) = Θ(g(n))

Theorem

f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n))

Tian-Li Yu Algorithms 34 / 41



Analyzing Algorithms Efficiency

Efficiency Analysis

Best, worst, average cases

Comparisons made for each pivot

4th pivot

Barbara

Carol

David

Elaine

Alfred
7

8

9

10

3rd pivot

Carol

David

Elaine

Barbara

Alfred

4

5

6

2nd pivot

David

Elaine

Carol

Barbara

Alfred

2

3

Sorted list

Alfred

Barbara

Carol

Elaine

David

Initial list

Elaine

David

Carol

Barbara

Alfred

1st pivot

Elaine

David

Carol

Barbara

Alfred

1

Worst case for insertion sort

Worst: (n2 − n)/2, best: (n − 1), average: Θ(n2)

Tian-Li Yu Algorithms 35 / 41



Analyzing Algorithms Correctness

Software Verification

Traveler’s gold chain

Cut

Cut Cut Cut

Tian-Li Yu Algorithms 36 / 41



Analyzing Algorithms Correctness

Assertion for “While”

Body

Modifiy

Initialize

Test

condition

Condition

false

Condition

true Loop invariant

and terminate condition

Loop invariant

Precondition

Precondition

Loop invariant

Termination condition

Tian-Li Yu Algorithms 37 / 41



Analyzing Algorithms Correctness

Correct or Not?

Count ← 0
Remainder ← Dividend
repeat (Remainder ← Remainder − Divisor

Count ← Count + 1)
until (Remainder < Divisor)
Quotient ← Count

Problematic

Remainder > 0?

Preconditions:

Dividend > 0
Divisor > 0
Count = 0
Remainder = Dividend

Loop invariants:

Dividend > 0
Divisor > 0
Dividend =
Count · Divisor + Remainder

Termination condition:

Remainder < Divisor

Tian-Li Yu Algorithms 38 / 41



Analyzing Algorithms Correctness

Verification of Insertion Sort

Loop invariant of the outer loop

Each time the test for termination is performed, the names preceding the N-th entry form a
sorted list

Termination condition

The value of N is greater than the length of the list.

If the loop terminates, the list is sorted

Tian-Li Yu Algorithms 39 / 41



Analyzing Algorithms Correctness

Final Words for Software Verification

In general, not easy.

Need a formal PL with better properties.

Tian-Li Yu Algorithms 40 / 41



Analyzing Algorithms Correctness

License

Page File Licensing Source/ author

7

”George Plya ca 1973”.,Author: Thane Plambeck from
Palo Alto, California, Original ca 1973, scanned March
14, 2007 Source: http://en.wikipedia.org/wiki/File:

George_P%C3%B3lya_ca_1973.jpg, Date:2013/05/14, Licensed
under the terms of the cc-by-2.0.

Tian-Li Yu Algorithms 41 / 41

http://en.wikipedia.org/wiki/File:George_P%C3%B3lya_ca_1973.jpg
http://en.wikipedia.org/wiki/File:George_P%C3%B3lya_ca_1973.jpg

	Algorithms
	Problem Solving
	Iterations
	Insertion Sort
	Recursion

	Dynamic Programming
	Shortest Path
	Matrix-Chain Multiplication

	Top-down vs. Botton-up
	Analyzing Algorithms
	Efficiency
	Correctness


