Section 7.5 Inner Product Spaces

With the "dot product" defined in Chapter 6, we were able to study the following properties of vectors in \mathcal{R}^n .

1) Length or norm of a vector **u**. $(||\mathbf{u}|| = \sqrt{\mathbf{u} \cdot \mathbf{u}})$

- 2) Distance of two given vectors \mathbf{u} and \mathbf{v} . ($||\mathbf{u} \mathbf{v}||$)
- 3) Orthogonality of two vectors **u** and **v**. (whether $\mathbf{u} \cdot \mathbf{v} = 0$)

Now, how do we describe the same properties of vectors in other types of vector spaces?

For example,

- 1) How do we define the norm of the function f(x) in C([a, b])?
- 2) How do we determine whether the polynomials f(x) and g(x) in \mathcal{P}_2 are orthogonal?
- 3) How do we calculate the distance between the two matrices *A* and *B* in \mathcal{M}_{4x3} ?

Section 7.5 Inner Product Spaces

Definition.

Let V be a vector space over a field \mathcal{F} (which is either \mathcal{R} or \mathcal{C}). An **inner product** on V is a function that assigns a scalar in \mathcal{F} to any pair of vectors **u** and **v**, denoted $\langle \mathbf{u}, \mathbf{v} \rangle$, such that, for any vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} in V and any scalar c, the following axioms hold.

Axioms of an Inner Product

1. $\langle \mathbf{u}, \mathbf{u} \rangle \in \mathcal{R} \text{ and } \langle \mathbf{u}, \mathbf{u} \rangle > 0 \text{ if } \mathbf{u} \neq \mathbf{0}.$ 2. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle^*.$ 3. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle.$ 4. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle.$

Property: Many inner products may be defined on a vector space. **Proof** If $\langle \cdot, \cdot \rangle$ is an inner product, then $\langle \cdot, \cdot \rangle_r$ defined by $\langle \mathbf{u}, \mathbf{v} \rangle_r = r \langle \mathbf{u}, \mathbf{v} \rangle$ is also an inner product for any r > 0.

Definition.

A vector space endowed with a particular **inner product** is called an **inner product space**.

Example: The dot product is an inner product on \mathcal{R}^n .

Definition.

Let V be a vector space over a field \mathcal{F} (which is either \mathcal{R} or \mathcal{C}). An **inner product** on V is a function that assigns a scalar in \mathcal{F} to any pair of vectors **u** and **v**, denoted $\langle \mathbf{u}, \mathbf{v} \rangle$, such that, for any vectors \mathbf{u}, \mathbf{v} , and **w** in V and any scalar c, the following axioms hold.

Axioms of an Inner Product

1. $\langle \mathbf{u}, \mathbf{u} \rangle \in \mathcal{R} \text{ and } \langle \mathbf{u}, \mathbf{u} \rangle > 0 \text{ if } \mathbf{u} \neq \mathbf{0}.$ 2. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle^*.$ 3. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle.$ 4. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle.$ Example: $V = C([a, b]) = \{f \mid f : [a, b] \rightarrow \mathcal{R}, f \text{ is continuous}\}$ is a vector space, and the function $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathcal{R}$ defined by $\langle f,g\rangle = \int_{a}^{b} f(t)g(t)dt$ $\forall f, g \in V$ is an inner product on V. Axiom 1: f^2 is continuous and non-negative. $f \neq \mathbf{0} \Rightarrow f^2(t_0) > 0$ for some $t_0 \in [a, b]$. $\Rightarrow f^2(t) > p > 0 \forall [t_0 - r/2, t_0 + r/2] \subseteq [a, b].$ $\Rightarrow \langle f, f \rangle = \int_{a}^{b} f^{2}(t) dt \ge r \cdot p > 0.$

Axioms 2 - 4: You examine them.

Example: $\langle A, B \rangle = \text{trace}(AB^T)$ is the Frobenius inner product on $\mathcal{R}^{n \times n}$. Axiom 1: $\langle A, A \rangle = \text{trace}(AA^T) = \sum_{1 \le i, j \le n} (a_{ij})^2 > 0 \ \forall A \ne O$. Axiom 2: $\text{trace}(AB^T) = \text{trace}(AB^T)^T = \text{trace}(BA^T)$. Axioms 3 - 4: You examine them.

Definition.

For any vector \mathbf{v} in an **inner product space** V, the **norm** or **length** of \mathbf{v} is denoted and defined as $||\mathbf{v}|| = \langle \mathbf{v}, \mathbf{v} \rangle^{1/2}$. The **distance** between $\mathbf{u}, \mathbf{v} \in V$ is defined as $||\mathbf{u} - \mathbf{v}||$.

Example: The Frobenius norm in $\mathcal{R}^{n \times n}$ is $||A|| = [\sum_{1 \le i,j \le n} (a_{ij})^2]^{1/2}$, since $\langle A, B \rangle = \text{trace}(AB^T) = \sum_{1 \le i,j \le n} a_{ij} b_{ij}$.

Property: Inner products and norms satisfy the elementary properties stated in Theorem 6.1, the Cauchy-Schwarz inequality, and the triangle inequality in Section 6.1. *Proof* You show it.

Theorem 6.1

Let \mathbf{u} and \mathbf{v} be vectors in \mathcal{R}^n and c be a scalar in \mathcal{R} . (a) $\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2$. (b) $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$. (c) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$. (d) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$. (e) $(\mathbf{v} + \mathbf{w}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{u}$. (f) $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{u}) = \mathbf{u} \cdot (c\mathbf{u})$. (g) $||c\mathbf{u}|| = |c|||\mathbf{u}||$.

Let V be an inner product space and let **u** and **v** be vectors in V and c be a scalar in \mathcal{R} . It can be shown that (a) $\langle \mathbf{u}, \mathbf{u} \rangle = ||\mathbf{u}||^2$. (b) $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$. (c) $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$. (d) $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$. (e) $\langle \mathbf{v} + \mathbf{w}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{w}, \mathbf{u} \rangle$. (f) $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{u} \rangle = \langle \mathbf{u}, c\mathbf{u} \rangle$. (g) $||c\mathbf{u}|| = |c|||\mathbf{u}||$.

Theorem 6.2 (Pythagorean theorem in \Re^n)

Let **u** and **v** be vectors in \mathcal{R}^n . Then **u** and **v** are orthogonal if and only if

 $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2.$

Proof $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + 2\mathbf{u} \cdot \mathbf{v} + ||\mathbf{v}||^2$ = 0 if and only if **u** and **v** are orthogonal

Pythagorean theorem in any inner product space V

Let V be an **inner product space** and let \mathbf{u} and \mathbf{v} be vectors in V. Then \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

Proof $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle + ||\mathbf{v}||^2$ = 0 if and only if **u** and **v** are orthogonal

Theorem 6.3 (Cauchy-Schwarz inequality)

For any vectors **u** and **v** in \mathcal{R}^n , we have

 $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \cdot ||\mathbf{v}||.$

Proof Using Theorem 6.2.

Cauchy-Schwarz inequality in any inner product space VLet V be an inner product space. For any vectors \mathbf{u} and \mathbf{v} in V, we have

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \cdot ||\mathbf{v}||.$

Proof Using Pythagorean Theorem.

Example: A Cauchy-Schwarz inequality in C([a, b])

$$\left(\int_{a}^{b} f(t)g(t)dt\right)^{2} \leq \left(\int_{a}^{b} f^{2}(t)dt\right) \left(\int_{a}^{b} g^{2}(t)dt\right)$$

Theorem 6.4 (Triangle inequality)

For any vectors \mathbf{u} and \mathbf{v} in \mathcal{R}^n , we have

 $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||.$

Proof Using Theorem 6.3.

Triangle inequality in any inner product space *V*

Let V be an inner product space. For any vectors \mathbf{u} and \mathbf{v} in V, we have

 $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||.$

Proof Using Cauchy-Schwartz inequality.

Definition.

In an inner product space V, the vectors \mathbf{u} , \mathbf{v} are called **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, a vector \mathbf{u} is called a **unit vector** if $||\mathbf{u}|| = 1$, a subset S is called **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ for all distinct $\mathbf{u}, \mathbf{v} \in S$, and S is called **orthonormal** if S is **orthogonal** and $||\mathbf{u}|| = 1$ for all $\mathbf{u} \in S$.

Properties:

- Every nonzero vector v in an inner product space may be changed into a unit normalized vector (1/||v||)v, and every orthogonal subset with only nonzero vectors may be changed into an orthonormal subset without affecting the subspace spanned.
- 2. An orthogonal set of nonzero vectors is L.I., no matter the set is finite or infinite.

Example: In the inner product space $C([0, 2\pi])$, the vectors $f(t) = \sin 3t$ and $g(t) = \cos 2t$ are orthogonal, since

$$\langle f,g \rangle = \int_0^{2\pi} \sin 3t \cos 2t dt = \frac{1}{2} \int_0^{2\pi} \left[\sin 5t + \sin t \right] dt = 0$$

Example: In the vector space of trigonometric polynomials

 $\mathcal{T}[0, 2\pi] = \text{Span} \{1, \cos t, \sin t, \cos 2t, \sin 2t, \cdots, \cos nt, \sin nt, \cdots\}$

= Span $S \Rightarrow S$ is orthogonal, since $\langle \cos nt, \sin mt \rangle = \int_{0}^{2\pi} \cos nt \sin mt dt = 0, \forall n, m \ge 0$ $\langle \cos nt, \cos mt \rangle = \int_{0}^{2\pi} \cos nt \cos mt dt = 0, \forall n \ne m$ $\langle \sin nt, \sin mt \rangle = \int_{0}^{2\pi} \sin nt \sin mt dt = 0, \forall n \ne m$

 \Rightarrow *S* is a basis of $\mathcal{F}[0, 2\pi]$.

Theorem 6.5 (Gram-Schmidt Process)

Let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ be a basis for a subspace W of \mathcal{R}^n . Define

$$\mathbf{v}_1 = \mathbf{u}_1,$$

$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1,$$

$$\vdots$$

$$\mathbf{v}_k = \mathbf{u}_k - \frac{\mathbf{u}_k \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\mathbf{u}_k \cdot \mathbf{v}_2}{||\mathbf{v}_2||^2} \mathbf{v}_2 - \dots - \frac{\mathbf{u}_k \cdot \mathbf{v}_{k-1}}{||\mathbf{v}_{k-1}||^2} \mathbf{v}_{k-1}.$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_i\}$ is an orthogonal set of nonzero vectors such that

Span
$$\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_i\} =$$
Span $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_i\}$

for each *i*. So $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ is an **orthogonal basis** for *W*.

Gram-Schmidt Process for any inner product space Let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ be a basis for an inner product space V. Define

 $\mathbf{v}_1 = \mathbf{u}_1$. $\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1,$ $\mathbf{v}_k = \mathbf{u}_k - \frac{\langle \mathbf{u}_k, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_k, \mathbf{v}_2 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_2 - \dots - \frac{\langle \mathbf{u}_k, \mathbf{v}_{k-1} \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_{k-1}.$ Then $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_i\}$ is an orthogonal set of nonzero vectors such that

Span
$$\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_i\} =$$
Span $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_i\}$

for each *i*. So $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ is an **orthogonal basis** for *W*.

Proposition: The Gram-Schmidt process is valid for any inner product space. **Proof** You show it.

Corollary: Every finite-dimensional inner product space has an orthonormal basis. 14

Example: \mathcal{P}_2 is an inner product space with the following inner product

 $\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx$ $\forall f,g \in \mathscr{P}_2$. From a basis $\mathscr{B} = \{1, x, x^2\} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ of \mathscr{P}_2 , an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ may be obtained by applying the Gram-Schmidt process. Example: \mathcal{P}_2 is an inner product space with the following inner product

 $\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx$ $\forall f,g \in \mathscr{P}_2$. From a basis $\mathscr{B} = \{1, x, x^2\} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ of \mathscr{P}_2 , an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ may be obtained by applying the Gram-Schmidt process.

 $\mathbf{v}_1 = \mathbf{u}_1 = 1$

$$\begin{aligned} \mathbf{v}_{2} &= \mathbf{u}_{2} - \frac{\langle \mathbf{u}_{2}, \mathbf{v}_{1} \rangle}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} = x - \frac{\int_{-1}^{1} t \cdot 1dt}{\int_{-1}^{1} 1^{2}dt} (1) = x - 0 \cdot 1 = x \\ \mathbf{v}_{3} &= \mathbf{u}_{3} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle}{||\mathbf{v}_{2}||^{2}} \mathbf{v}_{2} = x^{2} - \frac{\int_{-1}^{1} t^{2} \cdot 1dt}{\int_{-1}^{1} 1^{2}dt} (1) - \frac{\int_{-1}^{1} t^{2} \cdot tdt}{\int_{-1}^{1} t^{2}dt} (x) \\ &= x^{2} - \frac{\frac{2}{3}}{2} \cdot 1 - 0 \cdot x = x^{2} - \frac{1}{3}. \end{aligned}$$

16

To get an orthonormal basis, compute

$$||\mathbf{v}_1|| = \sqrt{\int_{-1}^{1} 1^2 dx} = \sqrt{2} \qquad ||\mathbf{v}_2|| = \sqrt{\int_{-1}^{1} x^2 dx} = \sqrt{\frac{2}{3}}$$

$$|\mathbf{v}_3|| = \sqrt{\int_{-1}^1 \left(x^2 - \frac{1}{3}\right)^2 dx} = \sqrt{\frac{8}{45}}$$

and get

$$\left\{\frac{1}{||\mathbf{v}_1||}\mathbf{v}_1, \frac{1}{||\mathbf{v}_2||}\mathbf{v}_2, \frac{1}{||\mathbf{v}_3||}\mathbf{v}_3, \right\} = \left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{45}{8}}\left(x^2 - \frac{1}{3}\right)\right\}$$

For \mathscr{P} with the same inner product and the basis $\mathscr{B} = \{1, x, x^2, \dots\}$, the same procedure may be applied to obtain an orthonormal basis $\{p_0(x), p_1(x), p_2(x), \dots\}$, called the normalized Legendre polynomials. Note that $p_0(x), p_1(x)$, and $p_2(x)$ are the above three orthonormal ones.

17

Proposition

Suppose that V is an inner product space and at W is a finite-dimensional subspace of V. For every **v** in V, there exist unique $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$ such that $\mathbf{v} = \mathbf{w} + \mathbf{z}$. The vector **v** is called the **orthogonal projection of v onto** W, and we have

$$\mathbf{w} = \langle \mathbf{v}, \mathbf{v}_1 \rangle \, \mathbf{v}_1 + \langle \mathbf{v}, \mathbf{v}_2 \rangle \, \mathbf{v}_2 + \dots + \langle \mathbf{v}, \mathbf{v}_n \rangle \, \mathbf{v}_n$$

if $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is an orthonormal basis of W.

Proof You show that the proof of Theorem 6.7 in Section 6.3 is also applicable here.

- Corollary: Under the notations in the above Proposition, among all vectors in W, the vectors closest to v is w.
- **Proof** Follow the derivations of the closest vector property in Section 6.3.

Since the closeness is measured by the distance, which involves the sum (integral) of a square of the difference vector (function), the closest vector is called the **least-square approximation**.

Example: \mathcal{P}_2 with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$ for all $f, g \in \mathcal{P}_2$ is a finite-dimensional subspace of C([-1, 1]). To $\mathbf{v} = f(x) = \sqrt[3]{x} \in \mathbf{C}([-1, 1])$, the least-squares approximation by a polynomial with degree ≤ 2 is the orthogonal projection of f onto \mathcal{P}_2 . odd function Thus take the orthonormal basis $\{v_1, v_2, v_3\}$, where $\mathbf{v}_1 = \frac{1}{\sqrt{2}}$ $\mathbf{v}_2 = \sqrt{\frac{3}{2}x}$ $\mathbf{v}_3 = \sqrt{\frac{45}{8}}\left(x^2 - \frac{1}{3}\right)$ and get -- even function $\mathbf{w} = \langle \mathbf{v}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{v}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \langle \mathbf{v}, \mathbf{v}_3 \rangle \mathbf{v}_3$ $= \left(\int_{-1}^1 \sqrt[3]{x} \cdot \sqrt{\frac{3}{2}} x dx \right) \sqrt{\frac{3}{2}} x$ $v = \frac{9}{7}x$ $= \frac{9}{7}x$ 19 $y = \sqrt[3]{x}$

Definition.

A function y = f(t) is called **periodic of period** p if f(t) = f(t+p) for all t.

The least-squares approximation by the trigonometric polynomials of a continuous periodic function f(t) of period 2π . Periodicity \Rightarrow consider the approximation over a period [0, 2π].

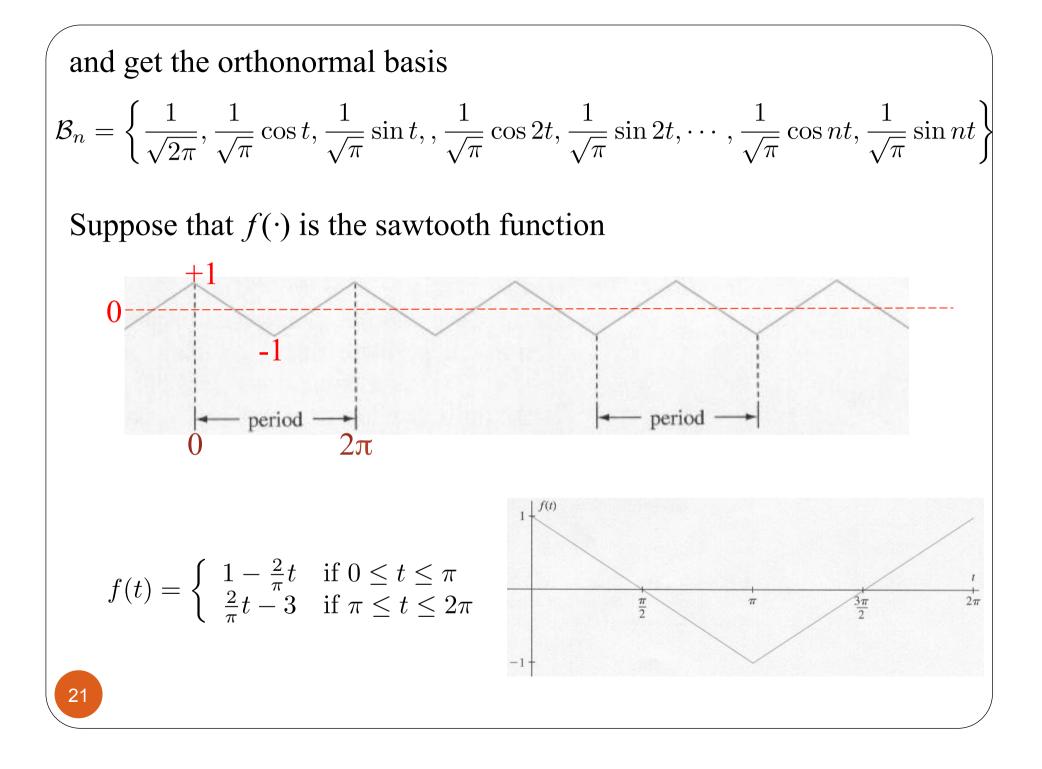
 $\Rightarrow f(\cdot) \in C([0, 2\pi])$, and can be orthogonally projected onto a subspace W_n spanned by an orthogonal set

 $S_n = \{1, \cos t, \sin t, \cos 2t, \sin 2t, \dots, \cos nt, \sin nt\}$

To have an orthonormal basis for W_n , compute

$$||1|| = \sqrt{\int_0^{2\pi} 1 dt} = \sqrt{2\pi}$$
$$||\cos kt|| = \sqrt{\int_0^{2\pi} \cos^2 kt dt} = \sqrt{\frac{1}{2} \int_0^{2\pi} (1 + \cos 2kt) dt} = \sqrt{\pi}$$
$$||\sin kt|| = \sqrt{\pi}$$

20



Let f_n be the least-squares approximation of f by W_n (the orthogonal projection of f onto W_n). Then

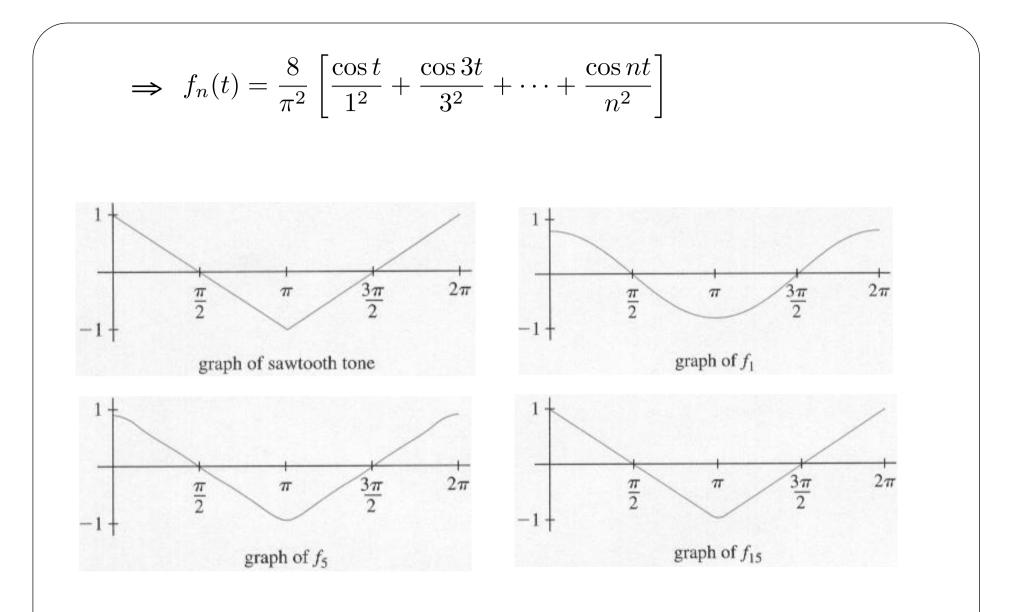
$$f_n = \left\langle f, \frac{1}{\sqrt{2\pi}} \right\rangle \frac{1}{\sqrt{2\pi}} + \left\langle f, \frac{1}{\sqrt{\pi}} \cos t \right\rangle \frac{1}{\sqrt{\pi}} \cos t + \left\langle f, \frac{1}{\sqrt{\pi}} \sin t \right\rangle \frac{1}{\sqrt{\pi}} \sin t + \cdots$$

$$+\left\langle f, \frac{1}{\sqrt{\pi}}\cos nt\right\rangle \frac{1}{\sqrt{\pi}}\cos nt + \left\langle f, \frac{1}{\sqrt{\pi}}\sin nt\right\rangle \frac{1}{\sqrt{\pi}}\sin nt$$

Now,

$$\left\langle f, \frac{1}{\sqrt{2\pi}} \right\rangle = \frac{1}{\sqrt{2\pi}} \int_0^\pi \left(1 - \frac{2}{\pi} t \right) dt + \frac{1}{\sqrt{2\pi}} \int_\pi^{2\pi} \left(\frac{2}{\pi} t - 3 \right) dt = 0 + 0$$

$$\left\langle f, \frac{1}{\sqrt{\pi}} \cos kt \right\rangle = \frac{1}{\sqrt{\pi}} \int_0^\pi \left(1 - \frac{2}{\pi} t \right) \cos kt \ dt + \frac{1}{\sqrt{\pi}} \int_\pi^{2\pi} \left(\frac{2}{\pi} t - 3 \right) \cos kt \ dt = \frac{4}{\pi \sqrt{\pi} k^2} (1 - (-1)^k)$$
and
$$\left\langle f, \frac{1}{\sqrt{\pi}} \sin kt \right\rangle = 0$$



Homework Set for Section 7.5

Section 7.5: Problems 1, 4, 9, 13, 17, 45, 46, 51, 53, 60, 62, 63, 64, 71, 75