
Section 7.5 Inner Product Spaces 

With the “dot product” defined in Chapter 6, we were able to 
study the following properties of vectors in Rn.  
  1) Length or norm of a vector u.  (                     ) 
  2) Distance of two given vectors u and v.   (||u - v||) 
  3) Orthogonality of two vectors u and v.   

||u|| =
p
u · u

(whether u · v = 0)

Now, how do we describe the same properties of vectors in other 
types of vector spaces? 
 
For example,  
       1) How do we define the norm of the function f(x) in C([a, b])? 
       2) How do we determine whether the polynomials f(x) and       

 g(x) in P2 are orthogonal? 
       3) How do we calculate the distance between the two matrices 

 A and B in M4x3? 
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Section 7.5 Inner Product Spaces 

Definition. 

Property:  Many inner products may be defined on a vector space. 
Proof  If 〈·, ·〉 is an inner product, then 〈·, ·〉r defined by 〈u, v〉r = r〈u, v〉 
           is also an inner product for any r > 0. 

Definition. 
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Example: The dot product is an inner product on Rn. 

Definition. 
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Example: V = C([a, b]) = {f  | f : [a, b] → R,  f  is continuous} is a 
                vector space, and the function 〈·, ·〉 : V×V → R defined by 
  

                ∀ f , g ∈ V is an inner product on V. 
                Axiom 1: f 2 is continuous and non-negative. 
                                f  ≠ 0 ⇒ f 2(t0) > 0 for some t0 ∈ [a, b]. 
                                         ⇒ f 2(t) > p > 0 ∀ [t0-r/2, t0+r/2] ⊆ [a, b]. 

                                         ⇒ 
                Axioms 2 - 4: You examine them. 

∫=〉〈
b

a
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b

a
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Example: 〈A, B〉 = trace(ABT) is the Frobenius inner product on Rn×n. 
                Axiom 1: 〈A, A〉 = trace(AAT) = Σ1≤i,j≤n(aij)2 > 0 ∀ A ≠ O. 
                Axiom 2: trace(ABT) = trace(ABT)T = trace(BAT). 
                Axioms 3 - 4: You examine them. 
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Definition. 

Example: The Frobenius norm in Rn×n is ||A|| = [Σ1≤i,j≤n(aij)2]1/2, since 
                〈A, B〉 = trace(ABT) = Σ1≤i,j≤naijbij. 

Property: Inner products and norms satisfy the elementary properties 
                stated in Theorem 6.1, the Cauchy-Schwarz inequality, and 
                the triangle inequality in Section 6.1. 
Proof  You show it. 

For any vector v in an inner product space V , the norm or length of v is

denoted and defined as ||v|| = hv,vi1/2. The distance between u,v 2 V is

defined as ||u� v||.

6 



Theorem 6.1
Let u and v be vectors in Rn

and c be a scalar in R.

(a) u · u = ||u||2.
(b) u · u = 0 if and only if u = 0.
(c) u · v = v · u.
(d) u · (v +w) = u · v + u ·w.

(e) (v +w) · u = v · u+w · u.
(f) (cu) · v = c(u · u) = u · (cu).
(g) ||cu|| = |c|||u||.

Let V be an inner product space and let u and v be vectors in V and c be a

scalar in R. It can be shown that

(a) hu,ui = ||u||2.
(b) hu,ui = 0 if and only if u = 0.
(c) hu,vi = hv,ui .
(d) hu,v +wi = hu,vi+ hu,wi .
(e) hv +w,ui = hv,ui+ hw,ui.
(f) hcu,vi = c hu,ui = hu, cui.
(g) ||cu|| = |c|||u||.
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Theorem 6.2 (Pythagorean theorem in Rn)

||u+ v||2 = ||u||2 + 2u · v + ||v||2Proof 
 
 

= 0 if and only if 
u and v are orthogonal 

Let u and v be vectors in Rn
. Then u and v are orthogonal if and only if

||u+ v||2 = ||u||2 + ||v||2.

Pythagorean theorem in any inner product space V

Proof 
 
 

= 0 if and only if 
u and v are orthogonal 

||u+ v||2 = ||u||2 + 2 hu,vi+ ||v||2

Let V be an inner product space and let u and v be vectors in V . Then u

and v are orthogonal if and only if

||u+ v||2 = ||u||2 + ||v||2.
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Theorem 6.3 (Cauchy-Schwarz inequality)

Proof   Using Theorem 6.2. 

Example: A Cauchy-Schwarz inequality in C([a, b])  

For any vectors u and v in Rn
, we have

|u · v|  ||u|| · ||v||.

Cauchy-Schwarz inequality in any inner product space V
Let V be an inner product space. For any vectors u and v in V , we have

| hu,vi |  ||u|| · ||v||.

Proof   Using Pythagorean Theorem. 

 Z b

a
f(t)g(t)dt

!2


 Z b

a
f2(t)dt

! Z b

a
g2(t)dt

!
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Theorem 6.4 (Triangle inequality)

Proof   Using Theorem 6.3. 

For any vectors u and v in Rn
, we have

||u+ v||  ||u||+ ||v||.

Triangle inequality in any inner product space V

Proof   Using Cauchy-Schwartz inequality. 

Let V be an inner product space. For any vectors u and v in V , we have

||u+ v||  ||u||+ ||v||.
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Definition. 

Properties: 
1. Every nonzero vector v in an inner product space may be changed 
    into a unit normalized vector (1/||v||)v, and every orthogonal subset 
    with only nonzero vectors may be changed into an orthonormal 
    subset without affecting the subspace spanned. 

Example: In the inner product space C([0, 2π]), the vectors f (t) = sin 3t 
                and g(t) = cos 2t are orthogonal, since 

2. An orthogonal set of nonzero vectors is L.I., no matter the set is  
    finite or infinite. 

In an inner product space V , the vectors u, v are called orthogonal if hu,vi =
0, a vector u is called a unit vector if ||u|| = 1, a subset S is called orthogonal

if hu,vi = 0 for all distinct u,v 2 S, and S is called orthonormal if S is

orthogonal and ||u|| = 1 for all u 2 S.
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Example: In the vector space of trigonometric polynomials 

= Span S ⇒ S is orthogonal, since 

⇒ S is a basis of T [0, 2π]. 

T [0, 2⇡] = Span {1, cos t, sin t, cos 2t, sin 2t, · · · , cosnt, sinnt, · · · }

hcosnt, sinmti =
Z 2⇡

0
cosnt sinmtdt = 0, 8n,m � 0

hcosnt, cosmti =
Z 2⇡

0
cosnt cosmtdt = 0, 8n 6= m

hsinnt, sinmti =
Z 2⇡

0
sinnt sinmtdt = 0, 8n 6= m
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Theorem 6.5 (Gram-Schmidt Process)
Let {u1,u2, · · · ,uk} be a basis for a subspace W of Rn

. Define

v1 = u1,

v2 = u2 �
u2 · v1

||v1||2
v1,

.

.

.

vk = uk � uk · v1

||v1||2
v1 �

uk · v2

||v2||2
v2 � · · ·� uk · vk�1

||vk�1||2
vk�1.

Then {v1,v2, · · · ,vi} is an orthogonal set of nonzero vectors such that

Span {v1,v2, · · · ,vi} = Span {u1,u2, · · · ,ui}

for each i. So {v1,v2, · · · ,vk} is an orthogonal basis for W .
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Proposition: The Gram-Schmidt process is valid for any inner product 
                     space. 
Proof  You show it. 

Corollary: Every finite-dimensional inner product space has an 
                 orthonormal basis. 

Gram-Schmidt Process for any inner product space
Let {u1,u2, · · · ,uk} be a basis for an inner product space V . Define

v1 = u1,

v2 = u2 �
hu2,v1i
||v1||2

v1,

.

.

.

vk = uk � huk,v1i
||v1||2

v1 �
huk,v2i
||v1||2

v2 � · · ·� huk,vk�1i
||v1||2

vk�1.

Then {v1,v2, · · · ,vi} is an orthogonal set of nonzero vectors such that

Span {v1,v2, · · · ,vi} = Span {u1,u2, · · · ,ui}

for each i. So {v1,v2, · · · ,vk} is an orthogonal basis for W .
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Example: P2 is an inner product space with the following inner product 
 

                ∀ f , g ∈ P2.  From a basis B = {1, x, x2} = {u1, u2, u3} of P2, 
                an orthogonal basis {v1, v2, v3} may be obtained by applying 
                the Gram-Schmidt process. 

∫−=〉〈
1

1
)()(, dxxgxfgf
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Example: P2 is an inner product space with the following inner product 
 

                ∀ f , g ∈ P2.  From a basis B = {1, x, x2} = {u1, u2, u3} of P2, 
                an orthogonal basis {v1, v2, v3} may be obtained by applying 
                the Gram-Schmidt process. 

∫−=〉〈
1

1
)()(, dxxgxfgf

v1 = u1 = 1

v2 = u2 �
hu2,v1i
||v1||2

v1 = x�
R 1
�1 t · 1dtR 1
�1 1

2
dt

(1) = x� 0 · 1 = x

v3 = u3 �
hu3,v1i
||v1||2

v1 �
hu3,v2i
||v2||2

v2 = x

2 �
R 1
�1 t

2 · 1dt
R 1
�1 1

2
dt

(1)�
R 1
�1 t

2 · tdt
R 1
�1 t

2
dt

(x)

= x

2 �
2
3

2
· 1� 0 · x = x

2 � 1

3
.
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To get an orthonormal basis, compute 

and get 

For P  with the same inner product and the basis B = {1, x, x2, }, 
the same procedure may be applied to obtain an orthonormal basis 
{p0(x), p1(x), p2(x),  }, called the normalized Legendre polynomials. 
Note that p0(x), p1(x), and p2(x) are the above three orthonormal ones. 

||v1|| =

sZ 1

�1
12dx =

p
2 ||v2|| =

sZ 1

�1
x

2
dx =

r
2

3

||v3|| =

sZ 1

�1

✓
x

2 � 1

3

◆2

dx =

r
8

45

⇢
1

||v1||
v1,

1

||v2||
v2,

1

||v3||
v3,

�
=

(
1p
2
,

r
3

2
x,

r
45

8

✓
x

2 � 1

3

◆)
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Proof  You show that the proof of Theorem 6.7 in Section 6.3 is also 
            applicable here. 
Corollary: Under the notations in the above Proposition, among all 
                 vectors in W, the vectors closest to v is w. 
Proof  Follow the derivations of the closest vector property in Section 
           6.3. 
Since the closeness is measured by the distance, which involves the 
sum (integral) of a square of the difference vector (function), the  
closest vector is called the least-square approximation.  

Proposition
Suppose that V is an inner product space and at W is a finite-dimensional

subspace of V . For every v in V , there exist unique w 2 W and z 2 W?
such

that v = w+ z. The vector v is called the orthogonal projection of v onto

W , and we have

w = hv,v1iv1 + hv,v2iv2 + · · ·+ hv,vnivn

if {v1,v2, · · · ,vn} is an orthonormal basis of W .
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Example: P2 with the inner product                                        for all 

                 f , g ∈ P2 is a finite-dimensional subspace of C([-1, 1]). 

                To v = f (x) =         ∈ C([-1, 1]), the least-squares approxi- 
                mation by a polynomial with degree ≤ 2 is the orthogonal 
                projection of  f  onto P2.   

∫−=〉〈 1 
1 )()(, dxxgxfgf

and get 

odd function 

even function 

0 0 

3
p
x

v1 =
1p
2

v2 =

r
3

2
x
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Thus take the orthonormal basis {v1, v2, v3}, 
where 

w = hv,v1iv1 + hv,v2iv2 + hv,v3iv3

=

 Z 1

�1

3
p
x ·
r

3

2
xdx

!r
3

2
x

=
9

7
x

v3 =

r
45

8

✓
x

2 � 1

3

◆



The least-squares approximation by the trigonometric polynomials 
of a continuous periodic function f (t) of period 2π.  
Periodicity ⇒ consider the approximation over a period [0, 2π]. 
 

Definition. 

||1|| =

sZ 2⇡

0
1dt =

p
2⇡

|| cos kt|| =

sZ 2⇡

0
cos

2 ktdt =

s
1

2

Z 2⇡

0
(1 + cos 2kt)dt =

p
⇡

|| sin kt|| =
p
⇡20 

To have an orthonormal basis for Wn, compute 

⇒ f (·) ∈ C([0, 2π]), and can be orthogonally projected onto a 
     subspace Wn spanned by an orthogonal set 
            Sn = {1, cos t, sin t, cos 2t, sin 2t, , …, cos nt, sin nt} 



and get the orthonormal basis 

Suppose that  f (·) is the sawtooth function 

0 2π 

+1 

-1 
0 

Bn =

⇢
1p
2⇡

,
1p
⇡
cos t,

1p
⇡
sin t, ,

1p
⇡
cos 2t,

1p
⇡
sin 2t, · · · , 1p

⇡
cosnt,

1p
⇡
sinnt

�

f(t) =

⇢
1� 2

⇡ t if 0  t  ⇡
2
⇡ t� 3 if ⇡  t  2⇡
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Let  f n be the least-squares approximation of  f  by Wn (the orthogonal 
projection of  f  onto Wn).  Then 

Now, 

and 

fn =

⌧
f,

1p
2⇡

�
1p
2⇡

+

⌧
f,

1p
⇡
cos t

�
1p
⇡
cos t+

⌧
f,

1p
⇡
sin t

�
1p
⇡
sin t+ · · ·

+

⌧
f,

1p
⇡
cosnt

�
1p
⇡
cosnt+

⌧
f,

1p
⇡
sinnt

�
1p
⇡
sinnt

⌧
f,

1p
2⇡

�
=

1p
2⇡

Z ⇡

0

✓
1� 2

⇡
t

◆
dt+

1p
2⇡

Z 2⇡

⇡

✓
2

⇡
t� 3

◆
dt = 0 + 0

⌧
f,

1p
⇡
cos kt

�
=

1p
⇡

Z ⇡

0

✓
1� 2

⇡
t

◆
cos kt dt+

1p
⇡

Z 2⇡

⇡

✓
2

⇡
t� 3

◆
cos kt dt

=

4

⇡
p
⇡k2

(1� (�1)

k
)

⌧
f,

1p
⇡
sin kt

�
= 0
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⇒ fn(t) =
8

⇡2


cos t

1

2
+

cos 3t

3

2
+ · · ·+ cosnt

n2

�
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�  Section 7.5: Problems 1, 4, 9, 13, 17, 45, 46,  51, 53, 
60, 62, 63, 64, 71, 75

Homework Set for Section 7.5 

24 


