4 N

Section 7.5 Inner Product Spaces

With the “dot product” defined in Chapter 6, we were able to
study the following properties of vectors in R”.

1) Length or norm of a vector u. (||u]| =+vu-u)

2) Distance of two given vectors u and v. (||u - v||)

3) Orthogonality of two vectors u and v. (whether u-v =0)

Now, how do we describe the same properties of vectors in other
types of vector spaces?

For example,
1) How do we define the norm of the function f{x) in C([a, b])?
2) How do we determine whether the polynomials f(x) and
g(x) in &, are orthogonal?
3) How do we calculate the distance between the two matrices

Aand Bin M, ;?
L

/




-

Section 7.5 Inner Product Spaces

Definition.
Let V' be a vector space over a field F (which is either R or C). An inner
product on V is a function that assigns a scalar in F to any pair of vectors
u and v, denoted (u,v), such that, for any vectors u,v, and w in V and any
scalar ¢, the following axioms hold.

Axioms of an Inner Product

1. {(u, u)ERand (u,u) > 0if u#0.
2. (u,v) = (v,u)".

3. <u+v w) = (u,w) + (v, w).

4. (cu,v) = c(u,v).

Property: Many inner products may be defined on a vector space.

1s also an inner product for any » > 0.

Proof 1f (-, -) is an inner product, then (-, -) defined by (u, v).= «u, v)

Definition.

A vector space endowed with a particular inner product is called an inner
product space.
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Example: The dot product is an inner product on R".

Definition.
Let V' be a vector space over a field F (which is either R or C). An inner
product on V is a function that assigns a scalar in F to any pair of vectors
u and v, denoted (u,v), such that, for any vectors u,v, and w in V and any
scalar ¢, the following axioms hold.

Axioms of an Inner Product

1. {(u, u)ERand (u,u) > 0if u#0.
2. (u,v) = (v,u)".

3. <u—|—v w) = (u,w) + (v, w).

4. (cu,v) = c(u,v).




-~

Example: V= C([a, b])={f | f: [a, b] = R, f is continuous} is a

vector space, and the function (-, -) : VxV — R defined by
(f,8)= [ f(Og(0)ds
V f, g € Vis an inner product on V.
Axiom 1: % is continuous and non-negative.
f=0=f%t,) >0 for some t, € [a, b].
= 4> p >0V [t,1/2, ty+r/2] C [a, b].

=(f.1)=[ fWdt=r-p>0.

Axioms 2 - 4: You examine them.
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Example: (4, B) = trace(4B") is the Frobenius inner product on ",
Axiom 1: (4, A) = trace(44") =2 _,;_(a;)> >0V 4 = O.

Axiom 2: trace(4B”) = trace(4B") = trace(BA").
Axioms 3 - 4: You examine them.




Definition.

For any vector v in an inner product space V, the norm or length of v is
denoted and defined as ||v|| = <V,V>1/2. The distance between u,v € V is
defined as |[u — v||.

2] 1/2

Example: The Frobenius norm in R™ is [|A|| = [X,_, _ (a,)°] ", since

(4, B) = trace(4B") =2,_, ._a,;b;

1sij=n%ijVij-

Property: Inner products and norms satisfy the elementary properties
stated in Theorem 6.1, the Cauchy-Schwarz inequality, and
the triangle inequality in Section 6.1.

Proof You show it.
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Theorem 6.1

Let u and v be vectors in R™ and ¢ be a scalar in R.
(a) u-u = [|ul]?.

Let V be an inner product space and let u and v be vectors in V and c be a
scalar in ‘R. It can be shown that

(a) (u,u) = [[uf|*.

b) (u,u) = 0 if and only if u = 0.
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Theorem 6.2 (Pythagorean theorem in ")

Let u and v be vectors in /R™. Then u and v are orthogonal if and only if

[[u+v[]* = [[u]]* +]]v]]*.

Proof o+ v][* = [[u]|* + 2u- v + ||v]]*

%(_J

=0 1f and only 1f
u and v are orthogonal

Pythagorean theorem in any inner product space V

Let V be an inner product space and let u and v be vectors in V. Then u
and v are orthogonal if and only if

[[u+v][* = [Ju][* +]Iv]]*.

Proof la+ v[* = [[u]]* + 2 (u,v) + [|v]]*
=0 1f and only 1f

@ u and v are orthogonal y




/Theorem 6.3 (Cauchy-Schwarz inequality)

For any vectors u and v in R", we have

u-v| < [luf] - [[v]].

Proof Using Theorem 6.2.

Cauchy-Schwarz inequality in any inner product space V
Let V be an inner product space. For any vectors u and v in V', we have

[ (w, v) [ < [lul] - [[v]].

Proof Using Pythagorean Theorem.

Example: A Cauchy-Schwarz inequality in C([a, b])

b 2 b b
( f(t)g<t)dt> < ( f2(t)dt> ( gZ(t)dt>
o (L) =(fros)(
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Theorem 6.4 (Triangle inequality)

For any vectors u and v in R"™, we have

u+v{| < [luf| + [[v]].

Proof Using Theorem 6.3.

Triangle inequality in any inner product space V
Let V be an inner product space. For any vectors u and v in V', we have

[+ V|| < fluf| + [[v]].

Proof Using Cauchy-Schwartz inequality.

o




Definition.
In an inner product space V', the vectors u, v are called orthogonal if (u,v) =
0, a vector u is called a unit vector if ||u|| = 1, a subset S is called orthogonal

if (u,v) = 0 for all distinct u,v € S, and S is called orthonormal if § is
orthogonal and ||u|| =1 for all u € S.

Properties:

1. Every nonzero vector v in an inner product space may be changed
into a unit normalized vector (1/||v||)v, and every orthogonal subset
with only nonzero vectors may be changed into an orthonormal
subset without affecting the subspace spanned.

2. An orthogonal set of nonzero vectors 1s L.I., no matter the set is
finite or infinite.

Example: In the inner product space C([0, 2xt]), the vectors f'(¢) = sin 3¢
and g(¢) = cos 2¢ are orthogonal, since

2w 27
1
° (f,9) = / sin 3t cos 2tdt = - / [sin 5t + sint] dt = 0
k 0 0

/
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Example: In the vector space of trigonometric polynomials
710, 2x] = Span {1, cost,sint, cos2t,sin 2t,--- ,cosnt,sinnt, - - - }
= Span § = S 1s orthogonal, since

27
(cosnt,sinmt) = / cosnt sin mtdt = 0,Vn,m > 0
027r
(cosnt,cosmt) = / cosnt cosmtdt = 0,Vn # m
0

27
(sinnt,sin mt) = / sinnt sin mtdt = 0,Vn # m
0

= §'1s a basis of J [0, 2m].

-
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Theorem 6.5 (Gram-Schmidt Process)
Let {uj,us, -+ ,ux} be a basis for a subspace W of R"™. Define
Vi = uj,
Us * Vi
V2 = U2 — 5 V1,
[[val]
Vk’ = uk—uk.V1V1_MV2_..._kal
[[va[[? [[val|? [[Vie—1|[?
Then {vi,vs, -+ ,v;} is an orthogonal set of nonzero vectors such that
Span {vi,va,---,Vv;} = Span {ug,ug, - ,u;}
for each i. So {vi,va, -+, vk} is an orthogonal basis for .




-

Gram-Schmidt Process for any inner product space

Let {uj,us, -+ ,ux} be a basis for an inner product space V. Define

Vi = uj,

Vo = <‘“|‘j,’1 T’|;> y

Ug, V1 Ug, V2 Uk, Vik—1

T <|\vl|\2>‘”‘ <\|V1\|2>"2"”‘< Vil e

Then {vi,vs, -+ ,v;} is an orthogonal set of nonzero vectors such that
Span {vy,va, - ,v;} = Span {ug,us,--- ,u;}

for each i. So {vi,va, -+, vy} is an orthogonal basis for W.

Proposition: The Gram-Schmidt process 1s valid for any inner product
space.

Proof You show it.

Corollary: Every finite-dimensional inner product space has an
@ orthonormal basis.
A,




-

Example: &, 1s an inner product space with the following inner product

~

(f,8) = [ f()g(x)dx
Vf,g€P, Fromabasis B= {1, x, x*} = {u;, u,, u;} of ,,
an orthogonal basis {v,, v,, v;} may be obtained by applying
the Gram-Schmidt process.
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Example: &, 1s an inner product space with the following inner product

(f,8) = [ f()g(x)dx
Vf,g€P, Fromabasis B= {1, x, x*} = {u;, u,, u;} of ,,
an orthogonal basis {v,, v,, v;} may be obtained by applying
the Gram-Schmidt process.

V1:u1:1

1
t-1dt
V2_112—<UZ7V;> 1 —f_ll 1)=2—-0-1==2x
il 12t
(us, v1) (us, va) f_ll t* - 1dt f_ll t2 - tdt
Vg = Us T TvalP? Vo = g2 — 1) — —5 5 T
1 2 J-, 12dt |, t2dt
2 1
2 _ 3 2
— 23 1-0.x=2%—_.
z” = T=2"— 3
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To get an orthonormal basis, compute

1 1

2
||V1||—\// 12dz = V2 V2|\// :I:2al:z,‘:\/j
4 . 3

! 1\° 8

— 2 _ _ ]2

Ival \// (a2-3) o =y/2

and get

{ 1 1 1 } 1 \/§ /45 ( ) 1)
Vi, Vo, V3, p = —, A/ =T, \/ — |27 — =
Vil Tvall ™ Jlvs]] V2 V2V 8 3

For & with the same inner product and the basis B = {1, x, x?, ---},
the same procedure may be applied to obtain an orthonormal basis
{Po(x), p1(x), py(x), --- }, called the normalized Legendre polynomials.
Note that p,(x), p,(x), and p,(x) are the above three orthonormal ones.

o y
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Proposition
Suppose that V' is an inner product space and at W is a finite-dimensional
subspace of V. For every v in V, there exist unique w € W and z € W+ such
that v = w + z. The vector v is called the orthogonal projection of v onto

W, and we have

W= (v, V1) Vi +(V,Va) Vo + - -+ (V, V) Vp

if {vy,vo, - ,v,} is an orthonormal basis of W.

Proof You show that the proof of Theorem 6.7 in Section 6.3 is also

applicable here.
Corollary: Under the notations in the above Proposition, among all

vectors 1n W, the vectors closest to v is w.
Proof Follow the derivations of the closest vector property in Section

6.3.

Since the closeness 1s measured by the distance, which involves the
sum (integral) of a square of the difference vector (function), the

closest vector 1s called the least-square approximation.

© y
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Example:

1
&, with the inner product( f,g)= f—l f(x)g(x)dx for all
f, g € P, is a finite-dimensional subspace of C([-1, 1]).

Tov=f(x)= Jz € C([-1, 1]), the least-squares approxi-
mation by a polyno\rﬁi\ail“with-de\gree < 2 is the orthogonal
projection of f onto &,. _odd function

Thus take the orthonormal b/asis’"?{/\/fl, Vs, V3},

45 1
where V1:L v2:\/_§rx - —(:cQ——>
NG 2 Ve \" 73

~
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DO |
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DO |
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Definition.
A function y = f(t) is called periodic of period p if f(t) = f(t + p) for all ¢.

The least-squares approximation by the trigonometric polynomials
of a continuous periodic function f(7) of period 2.
Periodicity = consider the approximation over a period [0, 27].

= (1) € C([0, 2x]), and can be orthogonally projected onto a
subspace W, spanned by an orthogonal set

S, =11, cost,sint, cos2t,sin2t¢,, ..., cosnt, sinnt}

To have an orthonormal basis for W , compute

2
1)) = / \dt = /27

27 27
|| cos kt|| = \// cos? ktdt = \/ / (1 + cos 2kt)dt = /7
@ || sin kt|| =
A,
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and get the orthonormal basis

1 1 1 1 1 1 .
B, = cost, —sint,, — cos 2t, — sin 2t, - —— cosnt, — sinnt

\/ﬂf VT VT R AV R

Suppose that /() 1s the sawtooth function

el
O______L _____________________________________________________________________
-1
|<—— period —>‘ — period —>
27
l~—ﬂ,)
1—2¢t ifo<t<nm ,
f— ™ - - + } ' .
/() {%t—S if 7 <t<2m . E
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Let f, be the least-squares approximation of f by W, (the orthogonal
projection of f onto W,). Then

! 1 1 1 1.
= <f’m>m*<f’ﬁcost>ﬁcost+<f’ﬁsm’f>ﬁsm’f+'“
1 I I
<f, N cosnt> ﬁ cosnt + <f, ﬁ Smnt> ﬁ sin nt

Now,

<f,\/i2—7r> \/%/ <1——t)dt+\/—2_7T/2w< t—3>dt_0+0

<f,%cosk:t> = \/_/ (1——t>cosktdt+—/2ﬂ< S)Cosktdt

= = (D)

d <f ! Si kt> 0
dn y —— Slll —
o o
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Homework Set for Section 7.5

e Section 7.5: Problems 1, 4,9, 13, 17, 45, 46, 51, 53,
60, 62, 63, 64, 71, 75
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