
Section 7.4 Matrix Representations of Linear Operators 

Definition. 

Property: 
[u + v]B = [u]B + [v]B and [cu]B = c[u]B for all u, v ∈ V and scalar c. 

ΦB : V à Rn defined as 
 ΦB (c1v1+c2v2+…+ cnvn) = [c1 c2 … cn]T. 
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Section 7.4 Matrix Representations of Linear Operators 

Definition. 

Property: 
[u + v]B = [u]B + [v]B and [cu]B = c[u]B for all u, v ∈ V and scalar c. 

Example:  Let V = Span B, where B  = {et cost, et sint} is L.I. and thus 
                 a basis of V.                

Consider the function v = et cos (t – π /4). (Is it in V?) 
Then v is in V since

v =

1p
2

et (cos t+ sin t) =
1p
2

et cos t+
1p
2

et sin t

In addition, [v]B =

h
1p
2

1p
2

iT
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Consider a linear transformation T: V → W 
 
Questions:  
1)  Can we define a “standard matrix” for T? 
2)  If not, what kind of matrix representation of T can we 

formulate? 

In this course, we will consider only a simpler case where T is a 
linear operator (i.e., the domain and the codomain are the same 
vector space). 
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Let T : V → V be a linear operator on an n-dimensional vector space 
V with a basis B.  Define the linear operator ΦB T (ΦB)-1 : Rn → Rn, 
and consider its standard matrix A, called the matrix representation 
of T with respect to B and denoted as [T]B. With the notations, [T]B = 
A and TA = ΦBT (ΦB)-1. 

V V 

Rn Rn 

ΦB (ΦB)-1 

T 

ΦBT (ΦB)-1 
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Question: How to express [T]B in terms of T and b1, b2, …, bn?  

Let T : V → V be a linear operator on an n-dimensional vector space 
V with a basis B.  Define the linear operator ΦB T (ΦB)-1 : Rn → Rn, 
and consider its standard matrix A, called the matrix representation 
of T with respect to B and denoted as [T]B. With the notations, [T]B = 
A and TA = ΦBT (ΦB)-1. 

V V 

Rn Rn 

ΦB (ΦB)-1 

T 

ΦBT (ΦB)-1 
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Example: Let T: P2 → P2 be defined by T(p(x)) = p(0) + 3p(1)x + p(2)x2 

                         for all p(x) in P2.  Then T is linear.  For B = {1, x, x2}, 
                 [T]B = A = [ a1  a2  a3 ] and 

2 2
1 2

2 2
3 1 2 3

1 0
[ (1)] [1 3 ] 3 ,  [ ( )] [3 2 ] 3 ,  

1 2

0 1 0 0
[ ( )] [3 4 ] 3 ,  so [ ] [ ] 3 3 3 .

4 1 2 4

T x x T x x x

T x x x T

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = + + = = = + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = + = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

a a

a a a a

B B B B

B B B

Property: 
If B = {v1, v2, …, vn} , then [T]B = [ [T(v1)]B  [T(v2)]B    [T(vn)]B ]. 
Proof [T]B = A ⇒ Aej = TA(ej) = ΦB T (ΦB)-1(ej) = ΦB T(vj) = [T(vj)]B . 
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Example:  Let V = Span B, where B  = {et cost, et sint} is L.I. and thus 
                 a basis of V, and the linear operator D: V → V be defined by 
                 D( f ) = f ʹ′ for all f ∈ V.  Then 

⎥
⎦

⎤
⎢
⎣

⎡

−
=⇒

+=

−+=

11
11

][
sin)1(cos)1()sin(
sin)1(cos)1()cos(

BD
teteteD
teteteD

ttt

ttt
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Proof [T(v)]B = ΦB T(v) = ΦB T (ΦB)-1ΦB(v) = TA([v]B) = [T]B [v]B, 
          where A = [T]B. 

Theorem 7.10 
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Example: Relative to the basis B = {1, x, x2} of P2, the coordinate 
                vector of p(x) = 5 - 4x + 3x2 is [p(x)]B = [ 5  -4  3 ]T. 
                Then [pʹ′(x)]B = [D(p(x))]B = [D]B [p(x)]B ,where D: P2 → P2  
                is defined by D(p(x)) = pʹ′(x), and 

0 1 0 0 1 0 5 4
[ ] 0 0 2 [ ( )] 0 0 2 4 6 .

0 0 0 0 0 0 3 0
D p x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ʹ′= ⇒ = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B B
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The Matrix Representation of the Inverse of an 
Invertible Linear Operator

Proof  (a) Note that ΦB is an isomorphism with an inverse (ΦB)-1, which 
                 is also an isomorphism. 
                 If T is invertible, then TA = ΦB T (ΦB)-1 is a composition of 
                 isomorphisms.  So TA is invertible and has an invertible 
                 standard matrix A. 
                 If A is invertible, then TA = ΦB T (ΦB)-1 is invertible.  So 
                 T = (ΦB)-1TA ΦB is invertible. 
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Proof   (b) By (a) and the invertibility of T, TC = ΦB T-1
 (ΦB)-1, 

                  where C = [T-1]B . 
                  Also by (a), TA-1 = (TA)-1 = ΦB T-1

 (ΦB)-1. 
                  ⇒ TC = TA-1 ⇒ C = A-1. 

The Matrix Representation of the Inverse of an 
Invertible Linear Operator
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Example:  In the vector space V with a basis B  = {et cost, et sint} and a 
                 linear operator D: V → V defined by D( f ) = f ʹ′  ∀ f ∈ V, 
 
                 it is known that                             .  So an anti-derivative of 
 
                 et sint is D-1(et sint).   
                 Since [D-1]B = ([D] B )-1 and [et sint] B  = [ 0  1]T,  

i.e., D-1(et sint) = -(et cost)/2 + (et sint)/2. 

[D]B =


1 1
�1 1

�

[D�1(et sin t)]B =


1
2 � 1

2
1
2

1
2

� 
0
1

�
=


� 1

2
1
2

�
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Definition. 

Example: For linear operator D: C∞ → C∞ defined by D( f ) = f ʹ′ with 
               C∞ = {f  | f :R → R,  f  has derivatives of all order}, it has 
                an eigenvector eλt ∈ C∞ corresponding to the eigenvalue λ, 
                since D( f )(t) = (eλt)ʹ′ = λeλt = λ f (t).  
                ⇒ Any scalar λ is an eigenvalue of D. 
                ⇒ D has infinitely many eigenvalues. 
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Example: f  is a solution of yʹ′ʹ′ + 4y = 0 ⇒ f ∈ C∞, since f  must be 
                twice-differentiable and f ʹ′ʹ′ = -4f, which imply that the 
                fourth derivative of f  exists (f ʹ′ʹ′ʹ′ʹ′ = -4f ʹ′ʹ′), and so on. 
                ⇒ f  ≠ 0 is an eigenvector of D2 : C∞ → C∞ corresponding 
                     to the eigenvalue -4 
                ⇒ f  ∈ eigenspace of D2 corresponding to the eigenvalue -4 
                Clearly, every vector in the eigenspace of D2 corresponding 
                to the eigenvalue -4 is a solution of yʹ′ʹ′ + 4y = 0. 
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Example: U: Rn×n → Rn×n defined by U(A) = AT is an isomorphism. 

                The eigenspace of U corresponding to the eigenvalue 1 is 
                the set of A ∈ Rn×n such that U(A) = AT = A, i.e., the set of 
                symmetric matrices. 
                                 The eigenspace of U corresponding to the eigenvalue -1 is 
                the set of A ∈ Rn×n such that U(A) = AT = -A, i.e., the set of 
                skew-symmetric matrices. 
                 

                 U only has eigenvalues 1 and -1, since U(A) = AT = λA  
                implies A = (AT)T= (λA)T = λAT = λ(λA) = λ2A.  
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Eigenvalues and Eigenvectors of a Matrix 
Representation of a Linear Operator

Proof “only if” (⇒) Suppose v ≠ 0 satisfies T(v) = λv. 
           ⇒ [v]B ≠ 0 and A[v]B = [T]B[v]B = [T(v)]B = [λv]B = λ[v]B  
           “if” (⇐) Suppose w ≠ 0 satisfies Aw = [T]Bw = λw. 
                          Let v = (ΦB)-1(w) ≠ 0. 
            ⇒ ΦB T(v) = [T(v)]B = [T]B[v]B = λ[v]B= ΦB (λv) 
            ⇒ T(v) = λv since ΦB is an isomorphism. 
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Example: Let T: P2 → P2 be defined as T(p(x)) = p(0) + 3p(1)x + p(2)x2 

                         for all p(x) in P2.  Then T is linear, and 
 
 
 

                where B = {1, x, x2} is a basis of P2. 
                The characteristic polynomial of A is -(t - 1)2(t - 6). 
                Span{[ 0  -3  2 ]T} is the eigenspace of A corresponding to 
                the eigenvalue 1 ⇒ ap(x) with a ≠ 0 and p(x) = -3x + 2x2  
                is an eigenvector of T corresponding to the eigenvalue 1. 
                Span{[ 0  1  1 ]T} is the eigenspace of A corresponding to 
                the eigenvalue 6 ⇒ bq(x) with b ≠ 0 and q(x) = x + x2  
                is an eigenvector of T corresponding to the eigenvalue 6. 

[T]B = A =

2

4
1 0 0
3 3 3
1 2 4

3

5
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Example: U: R2×2 → R2×2 defined by U(A) = AT is an isomorphism 

                and only has eigenvalues 1 and -1. 
                Let a basis of R2×2 be 

⇒ 

⇒ The characteristic polynomial of [U]B is (t - 1)3(t + 1), 
     for which indeed the only roots are 1 and -1.  

B =

⇢
1 0
0 0

�
,


0 1
0 0

�
,


0 0
1 0

�
,


0 0
0 1

��

[U ]B =

2

664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

775
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�  Section 7.4: Problems 1, 5, 9, 11, 19, 21, 23, 28, 32, 
36, 39, 40, 43, 44, 46. 

Homework Set for Section 7.4 
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