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Section 7.4 Matrix Representations of Linear Operators

Definition.
Let V be a finite-dimensional vector space and B be a basis for V. For any
vector v in V| the vector ®5(v) is called the coordinate vector of v relative
to B and is denoted as [v]z3.

b, V> R defined as

D, (cyvitevot...tev)=[c ¢, ... c ]

Property:
[u+v]gz=[u]gz +[v]gand [cu]gz = c[u]4 for all u, v € V and scalar c.
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Section 7.4 Matrix Representations of Linear Operators

Definition.
Let V be a finite-dimensional vector space and B be a basis for V. For any
vector v in V| the vector ®5(v) is called the coordinate vector of v relative
to B and is denoted as [v]z3.

Property:
[u+ v]g=[u]g4 + [v]g and [cu]4 = c[u]4 for all u, v E V and scalar c.

Example: Let V= Span $8B, where B = {e’ cost, e’sint} 1s L.I. and thus
a basis of V.

Consider the function v =e’cos (t — x /4). (Is 1t 1n V7?)
Then v is in V since

v = ——¢'(cost +sint) = —e'cost + —e’sint

V2 V2 V2

T
In addition, [v]|g = { % 75 }

© y




Consider a linear transformation 7 V — W

Questions:

1) Can we define a “standard matrix” for 77

2) If not, what kind of matrix representation of 7" can we
formulate?

In this course, we will consider only a simpler case where 7'1s a
linear operator (i.e., the domain and the codomain are the same
vector space).

L
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Let 7: V' — V be a linear operator on an n-dimensional vector space

V with a basis 8. Define the linear operator ®, 7'(®,)" : R" — R,
and consider its standard matrix A, called the matrix representation

of 7"with respect to $ and denoted as [7]4. With the notations, [7T]4 =
Aand T, = @, T(Dy) "

T
V———— 4
(Py)"! i i by
| v
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Let 7: V' — V be a linear operator on an n-dimensional vector space
V with a basis 8. Define the linear operator ®, 7'(®,)" : R" — R,
and consider its standard matrix A, called the matrix representation

Aand T, = @, T(Dy) "

T
V— >V
(Py)"! i i by
| v
%”l 5 > gzn
CpT(Dgp)
Question: How to express [T]4 in terms of Tand b, b,, ..., b, ?

o
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of 7"with respect to $ and denoted as [7]4. With the notations, [7T]4 =




/
Property:

£B = {v,, Vsr ..., v, o then [T]y = [ [TV)]g [T - [T¥)]g ]
Proof [T|g=A= Aej — TA(ej) = Og T(@$)'1(ej) =0y T(Vj) — [T(Vj)]fB '

Example: Let T: &, — &, be defined by T(p(x)) = p(0) + 3p(1)x + p(2)x?
for all p(x) in #,. Then T'is linear. For B = {1, x, x*},
[Tlg=A4=[a, a, ay]and

a, =[T(1)]; =[1+3x+x], =

a; =[T(X2)]B =[3x+4x2]B -
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Example: Let V"= Span 8B, where B = {e’ cost, ¢’sint} is L.1. and thus
a basis of V, and the linear operator D: V' — J be defined by

D(f)=f"forall f€ V. Then

D(e’ = (De' cost +(=1)e’ sint 11
(e C?St) (1)e’ cost + ( )e.sm ~[D], =

D(e'sint) = (1)e' cost +(1)e’ sint -11
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Theorem 7.10

Let T" be a linear operator on a finite-dimensional vector space V' with basis B.
Then for any vector v in V/,

T'(v)ls = [T]slv]s-

Proof [T(V)]g =@z T(V) = @y T(Pg) ' @g(v) = T([Vlg) = [T15 Vg
where A = [T 4.




Example: Relative to the basis B = {1, x, x*} of #,, the coordinate

vector of p(x) =5 - 4x + 3x2is [p(x)]g =[5 4 31"

~

Then [p'(¥)]g = [D(p)]g = [Dlg [p(0)]g where D: £, — &,
is defined by D(p(x)) = p'(x), and
0 1 O] 0 1 O] 51 [-4]
[D]l;=|0 0 2|=[p(x)]z=|0 0 2(|-4|=| 6/.
0 0 O 0O 0 O] 3
/
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The Matrix Representation of the Inverse of an
Invertible Linear Operator

Let T be a linear operator on a finite-dimensional vector space V' with basis B
and let A = [T]|g. Then the following statements are true.

(a) T is invertible if and only if A is invertible.

(b) If T is invertible, then [T~ !]5 = A~

Proof (a) Note that @ is an isomorphism with an inverse (@), which
is also an 1somorphism.
If T'is invertible, then T, = ® 4 T'(®,)" is a composition of
isomorphisms. So 7, 1s invertible and has an invertible
standard matrix A4.
If 4 is invertible, then T, = ® 4 T (Py,) " is invertible. So
T=(®g4)'T, P, is invertible.
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The Matrix Representation of the Inverse of an
Invertible Linear Operator

Let T be a linear operator on a finite-dimensional vector space V' with basis B
and let A = [T]|g. Then the following statements are true.

(a) T is invertible if and only if A is invertible.

(b) If T is invertible, then [T~ !]5 = A~

Proof (b) By (a) and the invertibility of T, T, = ® 4 T (D),
where C=[T"],.
Alsoby (), T =(T) ' =@, T (®y)".
=T.=T.=C=4".
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Example: In the vector space J with a basis B = {e’cost, e’sint} and a

~

linear operator D: V' — Vdefined by D(f)=f" V fEV,

o 1 1 : ..
it is known that D]z = [ 11 ] So an anti-derivative of

e' sint is D™!(e! sint).
Since [D']4=([D] )" and [e’sinf] ; =[ 0 1]/,

AN

i.e., D'\(e!sinf) = -(e’ cost)/2 + (e’ sinf)/2.

N =
N =

Nl

D~ (et sin )]s = [




Definition.
For a linear operator T on a vector space V' (over a field F), a nonzero vector v
in V' is said to be an eigenvector of T' corresponding to the eigenvalue M if
there is a scalar A € F such that T'(v) = Av. For an eigenvalue \ of T', the set of

all vectors v € V satisfying T'(v) = Av is the eigenspace of T corresponding
to .

Example: For linear operator D: C* — C” defined by D( /) =f' with
C*={f |f:R— R, f has derivatives of all order}, it has

an eigenvector e € C” corresponding to the eigenvalue A,
since D( 1)(¢) = (eM)' = heM= N f(1).
=> Any scalar A 1s an eigenvalue of D.

=> D has infinitely many eigenvalues.
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Example: f is a solution of y'' + 4y =0 = f& C™, since f must be
twice-differentiable and /"' = -4f, which imply that the
fourth derivative of / exists (f''"' = -4f'"), and so on.
= f = 0 is an eigenvector of D* : C* — C* corresponding
to the eigenvalue -4
= f € eigenspace of D* corresponding to the eigenvalue -4
Clearly, every vector in the eigenspace of D* corresponding
to the eigenvalue -4 is a solution of y'" + 4y = 0.




/
Example: U: R™>" — R™" defined by U(4) = A" is an isomorphism.
The eigenspace of U corresponding to the eigenvalue 1 1s

the set of 4 € R such that U(4) = A" = 4, i.e., the set of
symmetric matrices.

The eigenspace of U corresponding to the eigenvalue -1 1s
the set of 4 € R such that U(4) = A" = -4, i.e., the set of

skew-symmetric matrices.

U only has eigenvalues 1 and -1, since U(4) = A" = A4
implies 4 = (47)"= (MA)" = A4 = MAA) = M A.
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Eigenvalues and Eigenvectors of a Matrix
Representation of a Linear Operator

Let T be a linear operator on a finite-dimensional vector space V' with basis B
and let A = [T|g. Then a vector v in V is an eigenvector of T with correspond-
ing eigenvalue A if and only if [v]|g is an eigenvector of A with corresponding
eigenvalue .

Proof “‘only if” (=) Suppose v = 0 satisfies 7(v) =

= [Vlg = 0 and A[v]g = [T]g[V]g = [T(V)]g = [)w]33 = AlV]g
“i1f” (=) Suppose w = 0 satisfies Aw = [T] 4w = Aw.

Letv=(Pg,) "'(w) = 0.

= Og T(v) = [T(v)]g = [T]g[Vlg = MV]g= Pg (Av)
= T(v) = Av since P4 1s an isomorphism.
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Example: Let T2 &, — &, be defined as T(p(x)) = p(0) + 3p(1)x + p(2)x?

for all p(x) in #,. Then T 1s linear, and

|

where B = {1, x, x*} is a basis of &,.

= W
N W O
>~ W O

[T]g= 4=

The characteristic polynomial of 4 is -(¢ - 1)*( - 6).
Span{[ 0 -3 21"} is the eigenspace of 4 corresponding to
the eigenvalue 1 = ap(x) with a = 0 and p(x) = -3x + 2x?
1s an eigenvector of 7' corresponding to the eigenvalue 1.
Span{[ 0 1 1]"} is the eigenspace of 4 corresponding to
the eigenvalue 6 = bg(x) with b = 0 and g(x) = x + x?

1s an eigenvector of 7' corresponding to the eigenvalue 6.
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Example: U: R — R>** defined by U(4) = A" is an isomorphism

and only has eigenvalues 1 and -1.
Let a basis of 7% be

s={[5 3] [0 518 51 [6 0]}

— [U]BZ

SO~ O O
— o O O

o O O =
O O = O

=> The characteristic polynomial of [U] zis (¢ - 1)’(¢ + 1),
for which indeed the only roots are 1 and -1.
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Homework Set for Section 7.4

e Section 7.4: Problems 1, 5, 9, 11, 19, 21, 23, 28, 32,
36, 39, 40, 43, 44, 46.




