Section 7.4 Matrix Representations of Linear Operators

Definition.

Let V be a **finite-dimensional** vector space and \mathcal{B} be a basis for V. For any vector \mathbf{v} in V, the vector $\Phi_{\mathcal{B}}(\mathbf{v})$ is called the **coordinate vector** of \mathbf{v} relative to \mathcal{B} and is denoted as $[\mathbf{v}]_{\mathcal{B}}$.

$$\Phi_{\mathscr{B}}: V \xrightarrow{\rightarrow} \mathscr{R}^{n} \text{ defined as}$$

$$\Phi_{\mathscr{B}}(c_{1}\mathbf{v}_{1}+c_{2}\mathbf{v}_{2}+\ldots+c_{n}\mathbf{v}_{n}) = [c_{1} c_{2} \ldots c_{n}]^{T}.$$
Property:
$$[\mathbf{u}+\mathbf{v}]_{\mathscr{B}} = [\mathbf{u}]_{\mathscr{B}} + [\mathbf{v}]_{\mathscr{B}} \text{ and } [c\mathbf{u}]_{\mathscr{B}} = c[\mathbf{u}]_{\mathscr{B}} \text{ for all } \mathbf{u}, \mathbf{v} \in V \text{ and scalar } c.$$

1

Section 7.4 Matrix Representations of Linear Operators

Definition.

Let V be a **finite-dimensional** vector space and \mathcal{B} be a basis for V. For any vector \mathbf{v} in V, the vector $\Phi_{\mathcal{B}}(\mathbf{v})$ is called the **coordinate vector** of \mathbf{v} relative to \mathcal{B} and is denoted as $[\mathbf{v}]_{\mathcal{B}}$.

Property: $[\mathbf{u} + \mathbf{v}]_{\mathcal{B}} = [\mathbf{u}]_{\mathcal{B}} + [\mathbf{v}]_{\mathcal{B}}$ and $[c\mathbf{u}]_{\mathcal{B}} = c[\mathbf{u}]_{\mathcal{B}}$ for all $\mathbf{u}, \mathbf{v} \in V$ and scalar c.

Example: Let $V = \text{Span } \mathcal{B}$, where $\mathcal{B} = \{e^t \cos t, e^t \sin t\}$ is L.I. and thus a basis of *V*.

Consider the function $\mathbf{v} = e^t \cos(t - \pi/4)$. (Is it in *V*?) Then \mathbf{v} is in *V* since

$$\mathbf{v} = \frac{1}{\sqrt{2}} e^t \left(\cos t + \sin t\right) = \frac{1}{\sqrt{2}} e^t \cos t + \frac{1}{\sqrt{2}} e^t \sin t$$

In addition, $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$

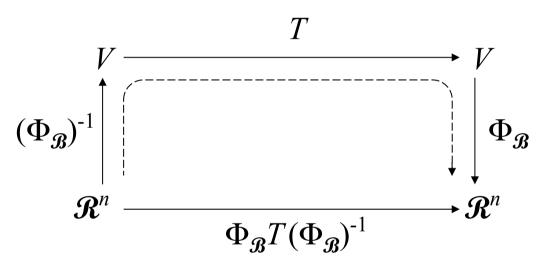
Consider a linear transformation $T: V \rightarrow W$

Questions:

- 1) Can we define a "standard matrix" for *T*?
- 2) If not, what kind of matrix representation of *T* can we formulate?

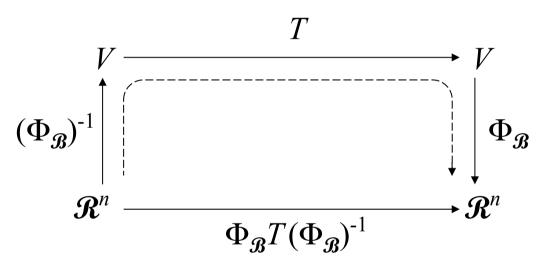
In this course, we will consider only a simpler case where T is a linear operator (i.e., the domain and the codomain are the same vector space).

Let $T: V \to V$ be a linear operator on an *n*-dimensional vector space V with a basis \mathcal{B} . Define the linear operator $\Phi_{\mathcal{B}} T(\Phi_{\mathcal{B}})^{-1} : \mathcal{R}^n \to \mathcal{R}^n$, and consider its standard matrix A, called the matrix representation of T with respect to \mathcal{B} and denoted as $[T]_{\mathcal{B}}$. With the notations, $[T]_{\mathcal{B}} = A$ and $T_A = \Phi_{\mathcal{B}} T(\Phi_{\mathcal{B}})^{-1}$.



4

Let $T: V \to V$ be a linear operator on an *n*-dimensional vector space V with a basis \mathcal{B} . Define the linear operator $\Phi_{\mathcal{B}} T(\Phi_{\mathcal{B}})^{-1} : \mathcal{R}^n \to \mathcal{R}^n$, and consider its standard matrix A, called the matrix representation of T with respect to \mathcal{B} and denoted as $[T]_{\mathcal{B}}$. With the notations, $[T]_{\mathcal{B}} = A$ and $T_A = \Phi_{\mathcal{B}} T(\Phi_{\mathcal{B}})^{-1}$.



Question: How to express $[T]_{\mathcal{B}}$ in terms of T and $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n$?

Property:
If
$$\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$$
, then $[T]_{\mathcal{B}} = [[T(\mathbf{v}_1)]_{\mathcal{B}} [T(\mathbf{v}_2)]_{\mathcal{B}} \cdots [T(\mathbf{v}_n)]_{\mathcal{B}}]$.
Proof $[T]_{\mathcal{B}} = A \Rightarrow A\mathbf{e}_j = T_A(\mathbf{e}_j) = \Phi_{\mathcal{B}} T(\Phi_{\mathcal{B}})^{-1}(\mathbf{e}_j) = \Phi_{\mathcal{B}} T(\mathbf{v}_j) = [T(\mathbf{v}_j)]_{\mathcal{B}}$.
Example: Let $T: \mathcal{P}_2 \Rightarrow \mathcal{P}_2$ be defined by $T(p(x)) = p(0) + 3p(1)x + p(2)x^2$
for all $p(x)$ in \mathcal{P}_2 . Then T is linear. For $\mathcal{B} = \{1, x, x^2\}$,
 $[T]_{\mathcal{B}} = A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$ and
 $\mathbf{a}_1 = [T(1)]_{\mathcal{B}} = [1 + 3x + x^2]_{\mathcal{B}} = \begin{bmatrix} 1\\ 3\\ 1 \end{bmatrix}, \ \mathbf{a}_2 = [T(x)]_{\mathcal{B}} = [3x + 2x^2]_{\mathcal{B}} = \begin{bmatrix} 0\\ 3\\ 2 \end{bmatrix},$
 $\mathbf{a}_3 = [T(x^2)]_{\mathcal{B}} = [3x + 4x^2]_{\mathcal{B}} = \begin{bmatrix} 0\\ 3\\ 4 \end{bmatrix}$, so $[T]_{\mathcal{B}} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3] = \begin{bmatrix} 1 \ 0 \ 0\\ 3 \ 3 \ 3\\ 1 \ 2 \ 4 \end{bmatrix}$.

Example: Let $V = \text{Span } \mathcal{B}$, where $\mathcal{B} = \{e^t \cos t, e^t \sin t\}$ is L.I. and thus a basis of V, and the linear operator $D: V \to V$ be defined by D(f) = f' for all $f \in V$. Then $D(e^t \cos t) = (1)e^t \cos t + (-1)e^t \sin t$ $D(e^t \sin t) = (1)e^t \cos t + (1)e^t \sin t$ $\Rightarrow [D]_{\mathcal{B}} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

Theorem 7.10

Let T be a linear operator on a finite-dimensional vector space V with basis \mathcal{B} . Then for any vector \mathbf{v} in V,

 $[T(\mathbf{v})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}.$

 $Proof [T(\mathbf{v})]_{\mathcal{B}} = \Phi_{\mathcal{B}} T(\mathbf{v}) = \Phi_{\mathcal{B}} T(\Phi_{\mathcal{B}})^{-1} \Phi_{\mathcal{B}}(\mathbf{v}) = T_{A}([\mathbf{v}]_{\mathcal{B}}) = [T]_{\mathcal{B}} [\mathbf{v}]_{\mathcal{B}},$ where $A = [T]_{\mathcal{B}}.$ Example: Relative to the basis $\mathscr{B} = \{1, x, x^2\}$ of \mathscr{P}_2 , the coordinate vector of $p(x) = 5 - 4x + 3x^2$ is $[p(x)]_{\mathscr{B}} = [5 -4 3]^T$. Then $[p'(x)]_{\mathscr{B}} = [D(p(x))]_{\mathscr{B}} = [D]_{\mathscr{B}} [p(x)]_{\mathscr{B}}$, where $D: \mathscr{P}_2 \to \mathscr{P}_2$ is defined by D(p(x)) = p'(x), and

$$[D]_{B} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow [p'(x)]_{B} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \\ 0 \end{bmatrix}.$$

The Matrix Representation of the Inverse of an Invertible Linear Operator

Let T be a linear operator on a finite-dimensional vector space V with basis \mathcal{B} and let $A = [T]_{\mathcal{B}}$. Then the following statements are true. (a) T is invertible if and only if A is invertible. (b) If T is invertible, then $[T^{-1}]_{\mathcal{B}} = A^{-1}$.

Proof (a) Note that $\Phi_{\mathcal{B}}$ is an isomorphism with an inverse $(\Phi_{\mathcal{B}})^{-1}$, which is also an isomorphism.

If *T* is invertible, then $T_A = \Phi_{\mathcal{B}} T(\Phi_{\mathcal{B}})^{-1}$ is a composition of isomorphisms. So T_A is invertible and has an invertible standard matrix *A*.

If *A* is invertible, then $T_A = \Phi_{\mathcal{B}} T(\Phi_{\mathcal{B}})^{-1}$ is invertible. So $T = (\Phi_{\mathcal{B}})^{-1} T_A \Phi_{\mathcal{B}}$ is invertible.

The Matrix Representation of the Inverse of an Invertible Linear Operator

Let T be a linear operator on a finite-dimensional vector space V with basis \mathcal{B} and let $A = [T]_{\mathcal{B}}$. Then the following statements are true. (a) T is invertible if and only if A is invertible. (b) If T is invertible, then $[T^{-1}]_{\mathcal{B}} = A^{-1}$.

Proof (b) By (a) and the invertibility of T, $T_C = \Phi_{\mathcal{B}} T^{-1} (\Phi_{\mathcal{B}})^{-1}$, where $C = [T^{-1}]_{\mathcal{B}}$. Also by (a), $T_{A^{-1}} = (T_A)^{-1} = \Phi_{\mathcal{B}} T^{-1} (\Phi_{\mathcal{B}})^{-1}$. $\Rightarrow T_C = T_{A^{-1}} \Rightarrow C = A^{-1}$. Example: In the vector space V with a basis $\mathcal{B} = \{e^t \cos t, e^t \sin t\}$ and a linear operator D: $V \rightarrow V$ defined by $D(f) = f' \quad \forall f \in V$,

it is known that $[D]_{\mathcal{B}} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. So an anti-derivative of

 $e^t \sin t$ is $D^{-1}(e^t \sin t)$. Since $[D^{-1}]_{\mathcal{B}} = ([D]_{\mathcal{B}})^{-1}$ and $[e^t \sin t]_{\mathcal{B}} = [0 \ 1]^T$,

$$[D^{-1}(e^t \sin t)]_{\mathcal{B}} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

i.e., $D^{-1}(e^t \sin t) = -(e^t \cos t)/2 + (e^t \sin t)/2$.

2

Definition.

For a linear operator T on a vector space V (over a field \mathcal{F}), a nonzero vector \mathbf{v} in V is said to be an **eigenvector** of T corresponding to the **eigenvalue** λ if there is a scalar $\lambda \in \mathcal{F}$ such that $T(\mathbf{v}) = \lambda \mathbf{v}$. For an eigenvalue λ of T, the set of all vectors $\mathbf{v} \in V$ satisfying $T(\mathbf{v}) = \lambda \mathbf{v}$ is the **eigenspace** of T corresponding to λ .

Example: For linear operator $D: \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ defined by D(f) = f' with $\mathbb{C}^{\infty} = \{f \mid f: \mathcal{R} \to \mathcal{R}, f \text{ has derivatives of all order}\}, \text{ it has}$ an eigenvector $e^{\lambda t} \in \mathbb{C}^{\infty}$ corresponding to the eigenvalue λ , since $D(f)(t) = (e^{\lambda t})' = \lambda e^{\lambda t} = \lambda f(t)$. \Rightarrow Any scalar λ is an eigenvalue of D. $\Rightarrow D$ has infinitely many eigenvalues. Example: f is a solution of $y'' + 4y = 0 \Rightarrow f \in \mathbb{C}^{\infty}$, since f must be twice-differentiable and f'' = -4f, which imply that the fourth derivative of f exists (f'''' = -4f''), and so on. $\Rightarrow f \neq 0$ is an eigenvector of $D^2 : \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ corresponding to the eigenvalue -4

⇒ $f \in$ eigenspace of D^2 corresponding to the eigenvalue -4 Clearly, every vector in the eigenspace of D^2 corresponding to the eigenvalue -4 is a solution of y'' + 4y = 0. Example: $U: \mathcal{R}^{n \times n} \to \mathcal{R}^{n \times n}$ defined by $U(A) = A^T$ is an isomorphism. The eigenspace of U corresponding to the eigenvalue 1 is the set of $A \in \mathcal{R}^{n \times n}$ such that $U(A) = A^T = A$, i.e., the set of symmetric matrices.

> The eigenspace of *U* corresponding to the eigenvalue -1 is the set of $A \in \mathbb{R}^{n \times n}$ such that $U(A) = A^T = -A$, i.e., the set of skew-symmetric matrices.

U only has eigenvalues 1 and -1, since $U(A) = A^T = \lambda A$ implies $A = (A^T)^T = (\lambda A)^T = \lambda A^T = \lambda (\lambda A) = \lambda^2 A$.

Eigenvalues and Eigenvectors of a Matrix Representation of a Linear Operator

Let T be a linear operator on a finite-dimensional vector space V with basis \mathcal{B} and let $A = [T]_{\mathcal{B}}$. Then a vector **v** in V is an eigenvector of T with corresponding eigenvalue λ if and only if $[\mathbf{v}]_{\mathcal{B}}$ is an eigenvector of A with corresponding eigenvalue λ .

Proof "only if" (\Rightarrow) Suppose $\mathbf{v} \neq \mathbf{0}$ satisfies $T(\mathbf{v}) = \lambda \mathbf{v}$. $\Rightarrow [\mathbf{v}]_{\mathcal{B}} \neq \mathbf{0}$ and $A[\mathbf{v}]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{B}} = [\lambda \mathbf{v}]_{\mathcal{B}} = \lambda [\mathbf{v}]_{\mathcal{B}}$ "if" (\Leftarrow) Suppose $\mathbf{w} \neq \mathbf{0}$ satisfies $A\mathbf{w} = [T]_{\mathcal{B}}\mathbf{w} = \lambda \mathbf{w}$. Let $\mathbf{v} = (\Phi_{\mathcal{B}})^{-1}(\mathbf{w}) \neq \mathbf{0}$. $\Rightarrow \Phi_{\mathcal{B}} T(\mathbf{v}) = [T(\mathbf{v})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = \lambda [\mathbf{v}]_{\mathcal{B}} = \Phi_{\mathcal{B}}(\lambda \mathbf{v})$ $\Rightarrow T(\mathbf{v}) = \lambda \mathbf{v}$ since $\Phi_{\mathcal{B}}$ is an isomorphism. Example: Let $T: \mathscr{P}_2 \to \mathscr{P}_2$ be defined as $T(p(x)) = p(0) + 3p(1)x + p(2)x^2$ for all p(x) in \mathscr{P}_2 . Then *T* is linear, and

$$[T]_{\mathcal{B}} = A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$

where $\mathcal{B} = \{1, x, x^2\}$ is a basis of \mathcal{P}_2 . The characteristic polynomial of A is $-(t - 1)^2(t - 6)$. Span $\{[0 -3 2]^T\}$ is the eigenspace of A corresponding to the eigenvalue $1 \Rightarrow ap(x)$ with $a \neq 0$ and $p(x) = -3x + 2x^2$ is an eigenvector of T corresponding to the eigenvalue 1. Span $\{[0 1 1]^T\}$ is the eigenspace of A corresponding to the eigenvalue $6 \Rightarrow bq(x)$ with $b \neq 0$ and $q(x) = x + x^2$ is an eigenvector of T corresponding to the eigenvalue 6. Example: U: $\Re^{2\times 2} \rightarrow \Re^{2\times 2}$ defined by $U(A) = A^T$ is an isomorphism and only has eigenvalues 1 and -1. Let a basis of $\Re^{2\times 2}$ be

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
$$\Rightarrow [U]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

⇒ The characteristic polynomial of $[U]_{\mathcal{B}}$ is $(t - 1)^3(t + 1)$, for which indeed the only roots are 1 and -1.

Homework Set for Section 7.4

Section 7.4: Problems 1, 5, 9, 11, 19, 21, 23, 28, 32, 36, 39, 40, 43, 44, 46.