Section 7.3 Basis and Dimension

Definition.

An finite subset $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ of a vector space V is said to be **linearly dependent** if there exist scalars c_1, c_2, \dots, c_n , at least one of which is nonzero, such that

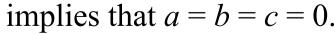
$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_n\mathbf{v}_n=\mathbf{0}.$$

S is said to be **linearly independent** if S is not **linearly dependent**.

Example: $S = \{x^2 - 3x + 2, 3x^2 - 5x, 2x - 3\}$, a subset of \mathcal{P}_2 is L.D., since

$$3(x^2 - 3x + 2) + (-1)(3x^2 - 5x) + 2(2x - 3) = \mathbf{0}$$

Example: $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}, \text{ a subset of } \mathcal{R}^{2 \times 2} \text{ is L.I., since}$ $a \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$



Example:
$$S = \{e^t, e^{2t}, e^{3t}\}$$
 is a L.I. subset of $\mathcal{F}(\mathcal{R})$, since if
 $h(t) = ae^t + be^{2t} + ce^{3t} = 0 \ \forall t$, then $h(0) = a + b + c = 0$,
 $h'(0) = a + 2b + 3c = 0$, and $h''(0) = a + 4b + 9c = 0$ together
imply $a = b = c = 0$.

Definition.

An infinite subset S of a vector space V is **linearly dependent** if some finite subset of S is **linearly dependent**. An infinite set S is **linearly independent** if S is not linearly dependent; that is, if every finite subset of S is linearly independent.

Example: The infinite subset $\{1, x, x^2, \dots, x^n, \dots\}$ of \mathcal{P} is L.I., since given any nonempty index set $I, \sum_{i \in I} c_i x^i = 0$ implies $c_i = 0$ for all $i \in I$. Thus its every nonempty finite subset is L.I..

Example: The infinite subset $\{1+x, 1-x, 1+x^2, 1-x^2, \dots, 1+x^n, 1-x^n, \dots\}$ of \mathscr{P} is L.D., since it contains L.D. finite subsets like $\{1+x, 1-x, 1+x^2, 1-x^2\}$, in which $1(1+x) + 1(1-x) + (-1)(1+x^2) + (-1)(1-x^2) = \mathbf{0}$.

Theorem 7.8

Let V and W be vector spaces, $T : V \to W$ be an isomorphism, and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a linear independent subset of V. Then the set of images $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$ is a linear independent subset of W.

Proof
$$c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \dots + c_k T(\mathbf{v}_k) = \mathbf{0}$$

 $\Rightarrow T(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k) = \mathbf{0}$
 $\Rightarrow c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0}$ because T is one-to-one
 $\Rightarrow c_1 = c_2 = \dots = c_k = \mathbf{0}.$

Definition.

A subset S of a vector space V is a **basis** of V if S is a **linearly independent** set and a **generating set** of V.

Example: $S = \{1, x, x^2, \dots, x^n, \dots\}$ is a basis of \mathcal{P} .

It will be shown that if a vector space V has a **finite** basis, then every basis of V is finite and contains the same number of vectors. It can be shown that every vector space has a basis, provided some **axiom of choice** from the set theory is accepted.

Theorem 7.9

Let V be a vector space with a finite basis. Then every basis for V is finite and contains the same number of vectors.

Proof Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be a basis of V. Consider a linear transformation $\Phi_{\mathcal{R}}: V \rightarrow \mathcal{R}^n$ defined as $\Phi_{\mathcal{B}}(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n) = [c_1 \ c_2 \ \ldots \ c_n]^T.$ Suppose V has another basis \boldsymbol{a} (finite of infinite) containing more vectors than $\boldsymbol{\mathcal{B}}$. $\Rightarrow a$ has a subset $S = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n, \mathbf{w}_{n+1}\}$ \Rightarrow S is L.I., since is **a** is L.I. $\Rightarrow \{\Phi_{\mathcal{R}}(\mathbf{w}_1), \Phi_{\mathcal{R}}(\mathbf{w}_2), \dots, \Phi_{\mathcal{R}}(\mathbf{w}_n), \Phi_{\mathcal{R}}(\mathbf{w}_{n+1})\} \text{ is L.I. in } \mathcal{R}^n,$ since $\Phi_{\mathcal{B}}$ is an isomorphism.

 \boxtimes contradiction, since in \mathcal{R}^n L.I. sets have at most *n* vectors. Thus \mathcal{A} can not contain more vectors than \mathcal{B} .

Theorem 7.9

Let V be a vector space with a finite basis. Then every basis for V is finite and contains the same number of vectors.

Proof

(Continue from last page)

Reversing the roles of a and B, we see that B can not contain more vectors than a.

 $\Rightarrow a$ and \mathcal{B} contain the same number of vectors.

Definitions.

The zero vector space and vector spaces having a finite basis are called **finite-dimensional**. Others are called **infinite-dimensional**. The dimension of a **finite-dimensional** vector space is equal to the number of vector(s) in any of its bases.

Property: If V is an infinite-dimensional vector space, then V contains an infinite L.I. set.

Proof
$$V \neq \{\mathbf{0}\} \Rightarrow \exists \mathbf{v}_1 \neq \mathbf{0} \text{ in } V \Rightarrow \exists \mathbf{v}_2 \notin \text{Span}\{\mathbf{v}_1\} \text{ in } V \text{ (otherwise dim. } V = 1) \Rightarrow \exists \mathbf{v}_3 \notin \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\} \text{ in } V \text{ (otherwise dim. } V = 2)$$

 $\Rightarrow \cdots \Rightarrow \exists \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n, ...\} \text{ in } V \text{ such that for all } n, \mathbf{v}_{n+1} \notin \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\} \Rightarrow \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n, ...\} \text{ is L.I..}$

Property: Dimension is preserved under isomorphism.

Proof If the vector space V has a finite basis \mathcal{B} , and is isomorphic to the other vector space W through an isomorphism T, then you show that the image of \mathcal{B} by T is a basis of W. \Rightarrow dim. V =dim. W.

You show the infinite-dimensional case.

Properties of finite-dimensional vector spaces:

Suppose V is an *n*-dimensional vector space.

1. Any L.I. subset of V contains at most n vectors.

2. Any L.I. subset of V that contains exactly n vectors is a basis for V.

3. Any generating set of V contains at least n vectors.

4. Any generating set of V that contains exactly n vectors is a basis for V. **Proof** Refer to \mathcal{R}^n via $\Phi_{\mathcal{B}}$.

Example:
$$\mathcal{B} = S_n = \{1, x, x^2, \dots, x^n\}$$
 is a basis of $\mathcal{P}_n \Rightarrow \dim \mathcal{P}_n = n+1$
 $\Rightarrow \Phi_{\mathcal{B}}(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = [a_0 \ a_1 \ a_2 \ \dots \ a_n]^T.$

Example: In $\mathcal{M}_{m \times n}$, let E_{ij} be the matrix whose (i,j)-entry is 1 and other entries are all 0, and let $S = \{E_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$. $\Rightarrow S$ is a basis of $\mathcal{M}_{m \times n}$. \Rightarrow dim. $\mathcal{M}_{m \times n} = mn$. For m = n = 2, $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

and for all $A \in \mathcal{M}_{2 \times 2}$,

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Example: Define $U: \mathcal{M}_{m \times n} \to \mathcal{L}(\mathcal{R}^n, \mathcal{R}^m)$ by $U(A) = T_A$, the matrix transformation induced by A.

$$\Rightarrow \forall A, B \in \mathcal{M}_{m \times n} \text{ and scalar } c, U(cA) = T_{cA} = cT_A = cU(A) \text{ and}$$
$$U(A + B) = T_{A+B} = T_A + T_B = U(A) + U(B)$$

 \Rightarrow U is linear.

Also, U is an isomorphism (you show it).

$$\Rightarrow$$
 dim. $\mathcal{L}(\mathcal{R}^n, \mathcal{R}^m) = mn$.

Homework Set for Section 7.3

Section 7.3: Problems 1, 9, 19, 21, 26, 29, 39, 45, 50, 51, 54, 55, 60, 62, 63.