
What is Linear Algebra?�

�  Wikipedia: 

�  Linear algebra is the branch of mathematics concerning 
vector spaces, often finite or countably infinite 
dimensional, as well as linear mappings between such 
spaces.  Such an investigation is initially motivated by a system 
of linear equations containing several unknowns. Such 
equations are naturally represented using the formalism of 
matrices and vectors.
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CHAPTER 7 
VECTOR SPACES 

Section 7.1 Vector Spaces and Their Subspaces 

Definition. (Vector Space)
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Definition. (Vector Space)


Four essential components in the definition of vector spaces 
1.  The set of vectors: V. 
2.  The field: F. (along with “+” and “.” operations thereof) 
3.  Addition operator “+”: V ✕ V à V 
4.  Scalar multiplication operation “.”: F ✕ V à V


Proposition. (Rn, R, “+”, “.”) is a vector space where vector addition 
“+” and scalar multiplication “.” were defined as in Chapter 1.
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Definition. (Vector Space)


Proposition. (Rn, R, “+”, “.”) is a vector space where vector 
addition “+” and scalar multiplication “.” were defined as in 
Chapter 1.

Question. Are there other forms of vector spaces?
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Theorem 1.1  (Properties of Matrix Addition and Scalar Multiplication)


Definition. (Vector Space)


Consider the case where n = 1, 
Then A, B, C are all vectors in Rm. 
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Properties: 
1. Rn is a vector space under the operations of sum and scalar 
    multiplication defined in Chapter 1. 
2. Mm×n is a vector space under the operations of matrix addition and 
    multiplication of a matrix by a scalar.  
3. Any subspace of Rn is a vector space. 
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Definition. (Function Space)


Theorem 7.1
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Proof  Clearly, f + g ∈ F(S) and af ∈ F(S). 
           The Axioms 1 and 3 are verified below.  You verify others.  
Axiom 1: (f + g)(t) = f(t) + g(t) = g(t) + f(t) = (g + f)(t) ∀ t ∈ S 
                ⇒ f + g = g + f    ∀ f, g ∈ F (S). 
Axiom 3: define 0(·) ∈ F (S) as 0(t) = 0 ∀ t ∈ S 
                ⇒ (f + 0)(t) = f(t) + 0(t) = f(t) + 0 = f(t) 
                ⇒ f + 0 = f    ∀ f ∈ F(S). 

Theorem 7.1
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Example


Definition


L(Rn,Rm
) = {all linear transformations from Rn

to Rm}

Property: L(Rn, Rm) is a vector space under the operations of addition 
                of linear transformations and the product of a linear 
                transformation by a scalar.  
Proof  You show it, noting that the “zero vector” is T0. 
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Definition


Property: P  is a vector space with the usual definitions of polynomial 
                addition and the product of a polynomial by a scalar. 
Proof  You show it, noting that the “zero vector” is p(x) = 0, the zero 
            polynomial (whose degree is defined to be -∞). 
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Definition. (Vector Space)


Four essential components in the definition of vector spaces 
1.  The set of vectors: V. 
2.  The field: F. (along with “+” and “.” operations thereof) 
3.  Addition operator “+”: V ✕ V à V 
4.  Scalar multiplication operation “.”: F ✕ V à V


Question: Why isn’t there an axiom like                     or  0 · v = 0 a · 0 = 0
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Theorem 7.2
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Proof  (a) 

(b)  Similar to (a).  You show it. 
(c)  Suppose 0ʹ′ and 0 are such that u + 0ʹ′ = u = u + 0 ∀u ∈ V. 
       ⇒ 0ʹ′ = 0 by (b). 
(d) Similar to (c).  You show it. 
(e) 

      ⇒ 0v = 0 by (a). 
(f) 0 + a0 = a0 = a(0 + 0) = a0 + a0 ⇒ a0 = 0 by (a). 
(g) v + (-1)v = (1)v + (-1)v = (1+ (-1))v = 0v = 0 
      ⇒ (-1)v = -v by (d). 
(h)  Similar to (g).  You show it. 

u = u+ 0 (by axiom 3)

= u+ (v + (�v)) (by axiom 4)

= (u+ v) + (�v)) (by axiom 2)

= (w + v) + (�v))
= w + (v + (�v)) (by axiom 2)

= w + 0 (by axiom 4)

= w. (by axiom 3)

0v + 0v = (0 + 0)v (by axiom 8)

= 0v (property of 0)

= 0+ 0v. (by axioms 3 and 1)
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Definition. (Subspace)


Properties: 
1.  A subspace is itself a vector space. 
 
.  

Example: Given S ≠ ∅ and s0 ∈ S, W = { f(·) | f(s0) = 0} ⊆ F(S) is 
                a subspace of F (S) since for all f(·), g(·) ∈ W and a ∈ R, 
                       (f + g)(s0) = f(s0) + g(s0) = 0 + 0 = 0,  and 
                       (af )(s0) = af(s0) = a·0 = 0. 

V    W     0


2. V is the largest subspace of a vector space V. 
3. The zero subspace {0} is a subspace of any vector space V. 
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Example:  
  Define a trace of an n x n matrix A as  
                       trace A = a11 + a22 + … + ann. 
 

  Then, 
           W = { A | trace A = 0} ⊆ Rn×n is a subspace of Rn×n since 
                for all A, B ∈ W and c ∈ R, 
                       trace(A + B) = trace A + trace B = 0 + 0 = 0,  and 
                       trace (cA) = c · trace A = c·0 = 0. 
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Example: C(R) = {all continuous functions mapping from R to R} 
                is a subspace of F (R), since the sum of two continuous 
                functions is a continuous function, and any scalar multiple 
                of a continuous function is a continuous function. 
                ⇒ C(R) is a vector space. 
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Example: Pn = {all polynomials in the variable x with degree ≤ n} 
                is a subspace of P. 
                ⇒ Pn is a vector space. 

Example: Let P’n = {all polynomials in the variable x with degree = n} 
                Is P’n a subspace of P ? 
                Is P’n a vector space. 
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Definition. (Linear Combination)

A vector v is a linear combination of the vectors of a (possibly infinite) subset

S of a vector space V if there exist (finite number of) vectors v1,v2, · · · ,vn

in S and scalars c1, c2, · · · , cn such that

v = c1v1 + c2v2 + · · ·+ cnvn.

The scalars are called the coe�cients of the linear combination.
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Example:  A linear combination in the vector space R2×2 

Definition. (Linear Combination)

A vector v is a linear combination of the vectors of a (possibly infinite) subset

S of a vector space V if there exist (finite number of) vectors v1,v2, · · · ,vn

in S and scalars c1, c2, · · · , cn such that

v = c1v1 + c2v2 + · · ·+ cnvn.

The scalars are called the coe�cients of the linear combination.


�1 8
2 �2

�
= 2


1 3
1 �1

�
+ (�1)


4 0
1 1

�
+ (1)


1 2
1 1

�
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Example:  A linear combination in the vector space P 

S3 = {1, x, x2, x3} 
⇒ P3 = the set of all linear combinations of the vectors in S3. 
S = {1, x, x2, , xn, } 
⇒ any polynomial is a linear combination of the vectors in S. 

Definition. (Linear Combination)

A vector v is a linear combination of the vectors of a (possibly infinite) subset

S of a vector space V if there exist (finite number of) vectors v1,v2, · · · ,vn

in S and scalars c1, c2, · · · , cn such that

v = c1v1 + c2v2 + · · ·+ cnvn.

The scalars are called the coe�cients of the linear combination.

f(x) = 2 + 3x� x

2 = (2)1 + (3)x+ (�1)x2 + (0)x3
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Definition. (Span)


Example: 

Example: For all A ∈ Span S, with                                                      , 

⇒ Span S = {A | trace A = 0, A ∈ R2×2}, a subspace of R2×2. 

Question: 
Let V be a vector space and W be the span of a subset S.  
Is W a subspace of V? 

Span
�
1, x, x2

, x

3
 
= P3 Span

�
1, x, x2

, . . . , x

n
, ...

 
= P

A = a


1 0
0 �1

�
+ b


0 1
0 0

�
+ c


0 0
1 0

�
=


a b
c �a

�
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Theorem 7.3


Example: the space of trigonometric polynomials 

Proof  Extend the proof of Theorem 4.1 in Section 4.1. 

is a subspace of F ([0, 2π]), 
T [0, 2⇡] = Span {1, cos t, sin t, cos 2t, sin 2t, · · · , cosnt, sinnt, · · · }
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�  Section 7.1: Problems 28, 30, 32, 55-59, 79-82, 91, 
92.


Homework Set for Section 7.1 

23 


