Chapter 5 in a glance:

Let *T* be a linear operator whose standard matrix is *A* with size $n \ge n$. Then, a nonzero vector x is said to be an **eigenvector** of *A* and *T* if there exists a scalar λ such that

$$\Gamma(\mathbf{x}) = A\mathbf{x} = \lambda \mathbf{x}$$

The scalar λ is called an **eigenvalue** of T (or A).

A scalar *t* is an eigenvalue of *A* if and only if *t* satisfies the **characteristic equation** of *A*:

$$\det (A - tI) = 0$$

A matrix A is **diagonalizable** (i.e., $\exists P$ invertible, D diagonal such that $A = PDP^{-1}$) if and only if A has n linearly independent eigenvectors.

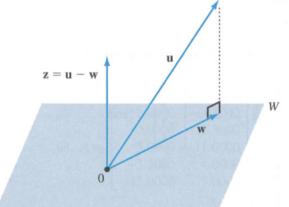
Chapter 6 review: (page 1 of 2)

1) A subset S of \mathcal{R}^n is said to be an **orthogonal** set if

 $\forall \mathbf{u}_1, \mathbf{u}_2 \in \mathcal{S}, \mathbf{u}_1 \neq \mathbf{u}_2 \Rightarrow \mathbf{u}_1 \cdot \mathbf{u}_2 = 0.$

An orthogonal set without zero vectors is linearly independent. 2) For a subspace W of \mathcal{R}^n , an **orthogonal basis** can be found by starting with any basis and performing **Gram-Schmidt Process**. 3) An **orthonormal** basis is an orthogonal basis whose vectors have unit norms.

4) Let W be a subspace of \mathcal{R}^n with an orthonormal basis $\{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k\}$. Then any vector $\mathbf{u} \in \mathcal{R}^n$ can be uniquely decomposed as $\mathbf{u} = \mathbf{w} + \mathbf{z}$ where $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$.



orthogonal complement

5) The orthogonal projection w can be found as

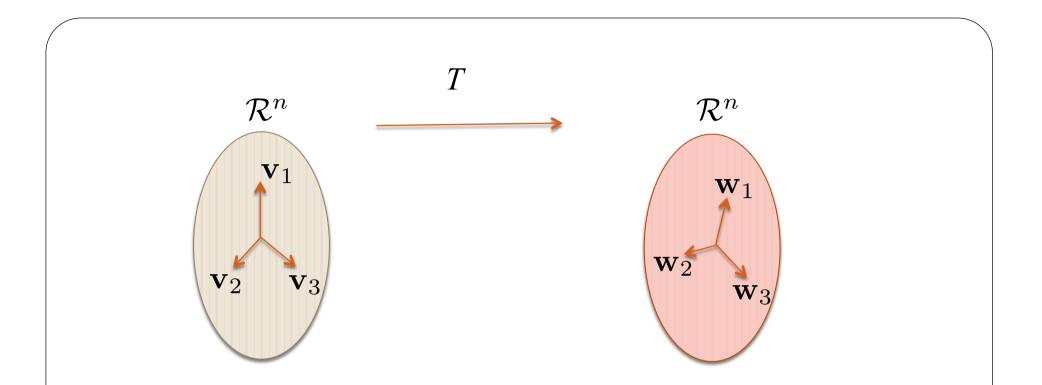
$$\mathbf{w} = (\mathbf{u} \cdot \mathbf{w}_1)\mathbf{w}_1 + (\mathbf{u} \cdot \mathbf{w}_2)\mathbf{w}_2 + \dots + (\mathbf{u} \cdot \mathbf{w}_k)\mathbf{w}_k$$

Chapter 6 review: (page 2 of 2) 6) Another way of find the orthogonal projection of $\mathbf{u} \in \mathbb{R}^n$ on a subspace W (using a basis $\mathcal{B} = {\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k}$ which is not required to be orthogonal or orthonormal):

 $\mathbf{w} = C(C^T C)^{-1} C^T \mathbf{u}$ where *C* (*n* x *k*) contains the basis vectors of W.

7) An *n* x *n* matrix *Q* is called "**orthogonal**" if its columns form an **orthonormal basis** of \mathcal{R}^n . ($Q^TQ = I$)

8) A linear operator T on \mathcal{R}^n is called orthogonal if its standard matrix is orthogonal. It is also "norm-preserving" ($||T(\mathbf{u})||^2 = ||\mathbf{u}||^2, \forall \mathbf{u} \in \mathcal{R}^n$) and preserving dot products ($\mathbf{u} \cdot \mathbf{v} = T(\mathbf{u}) \cdot T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathcal{R}^n$).



What is a "good" basis?

- 1) From the point of view of a linear operator:
- 2) From the point of view of a subspace (or a vector space): orthogonal, or even orthonormal.

Section 6.6 Symmetric Matrices

Definition (in Chapter 2)

A square matrix A is called a **symmetric matrix** if $A^T = A$.

In this section, we will study some interesting properties of any symmetric matrix *A*.

In particular, we would like to learn properties of eigenvalues and eigenvectors of a symmetric matrix *A*.

Questions:
(1) Is an eigenvalue of *A* always real?
(2) Are any two eigenvectors of *A* corresponding to distinct eigenvalues always orthogonal?
(3) Is a symmetric matrix *A* always diagonalizable?

Section 6.6 Symmetric Matrices

Example: Consider
$$A = A^T = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

 $\Rightarrow \det(tI_2 - A) = t^2 - (a + c)t + ac - b^2.$
Since $(a + c)^2 - 4(ac - b^2) = (a - c)^2 + 4b^2 \ge 0$,

A has two real eigenvalues.

***Proposition:** If $A = A^T \in \mathcal{R}^{n \times n}$, then all eigenvalues of A are real. **Proof** Let $A\mathbf{x} = \lambda \mathbf{x}$, where $\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n]^T \neq \mathbf{0}$. Since $a_{ij} = a_{ji}$,

$$\mathbf{x}^{*T} A \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i^* x_j$$

=
$$\sum_{i=1}^{n} a_{ii} |x_i|^2 + \sum_{i=1}^{n} \sum_{j=1}^{i-1} a_{ij} \left(x_i^* x_j + x_j^* x_i \right)$$

6

If $\mathbf{u}, \mathbf{v} \in \mathcal{R}^n$ are eigenvectors of a **symmetric matrix** $A \in \mathcal{R}^{n \times n}$ that correspond to distinct eigenvalues, then \mathbf{u} and \mathbf{v} are orthogonal.

Proof

If $\mathbf{u}, \mathbf{v} \in \mathcal{R}^n$ are eigenvectors of a symmetric matrix $A \in \mathcal{R}^{n \times n}$ that correspond to distinct eigenvalues, then \mathbf{u} and \mathbf{v} are orthogonal.

Proof Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ be eigenvectors of A corresponding to eigenvalues λ, μ , respectively.

$$\Rightarrow A\mathbf{u} \cdot \mathbf{v} = \lambda \mathbf{u} \cdot \mathbf{v} = \lambda(\mathbf{u} \cdot \mathbf{v})$$
$$= \mathbf{u} \cdot A^T \mathbf{v} = \mathbf{v} \cdot A \mathbf{v} = \mathbf{u} \cdot \mu \mathbf{v} = \mu(\mathbf{u} \cdot \mathbf{v}).$$

$$\Rightarrow (\lambda - \mu) \mathbf{u} \cdot \mathbf{v} = 0 \Rightarrow \mathbf{u} \cdot \mathbf{v} = 0 \text{ since } \lambda - \mu \neq 0.$$

Theorem 6.14' (*)

Consider a matrix $A \in \mathcal{C}^{n \times n}$ that satisfies $A^H = A$. If $\mathbf{u}, \mathbf{v} \in \mathcal{C}^n$ are eigenvectors of A that correspond to distinct eigenvalues, then \mathbf{u} and \mathbf{v} are orthogonal.

* **Proof** Follow the proof for **Theorem 6.14**, with \mathcal{R} changed to \mathcal{C} and A^T changed to A^H .

For a matrix $A \in \mathbb{R}^{n \times n}$, A is **symmetric** (i.e., $A = A^T$) if and only if there is an **orthonormal basis** for \mathbb{R}^n consisting of eigenvectors of A, in which case there exists an **orthogonal** matrix P and a **diagonal** matrix D such that $P^T A P = D$.

For a matrix $A \in \mathbb{R}^{n \times n}$, A is **symmetric** (i.e., $A = A^T$) if and only if there is an **orthonormal basis** for \mathbb{R}^n consisting of eigenvectors of A, in which case there exists an **orthogonal** matrix P and a **diagonal** matrix D such that $P^T A P = D$.

Proof Sufficiency ("if"):
$$A = (P^T)^{-1}DP^{-1} = (P^{-1})^{-1}DP^T = PDP^T$$

 $\Rightarrow A^T = (PDP^T)^T = (P^T)^T DP^T = PDP^T = A.$

Necessity* ("only if"): By induction on *n*. The necessity obviously holds for n = 1. Assume the necessity holds for $n \ge 1$, and consider $A \in \mathcal{R}^{(n+1)\times(n+1)}$. *A* has an eigenvector $\mathbf{b}_1 \in \mathcal{R}^{n+1}$ corresponding to a real eigenvalue λ . $\Rightarrow \mathbf{b}_1 \ne \mathbf{0}$, and \exists an orthonormal basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{n+1}\}$ for \mathcal{R}^{n+1} by the **Extension Theorem** and Gram-Schmidt Process.

Let
$$B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_{n+1}] \Rightarrow B$$
 is orthogonal and

$$B^T A B = \begin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_{n+1}^T \end{bmatrix} [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_{n+1}] = \begin{bmatrix} \frac{\mathbf{b}_1^T A \mathbf{b}_1 \ \mathbf{b}_1^T A \mathbf{b}_2 \ \cdots \ \mathbf{b}_1^T A \mathbf{b}_{n+1}}{\mathbf{b}_2^T A \mathbf{b}_2 \ \cdots \ \mathbf{b}_2^T A \mathbf{b}_{n+1}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{b}_{n+1}^T A \mathbf{b}_1 \ \mathbf{b}_{n+1}^T A \mathbf{b}_1 \ \mathbf{b}_{n+1}^T A \mathbf{b}_2 \ \cdots \ \mathbf{b}_{n+1}^T A \mathbf{b}_{n+1} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\lambda \ \mathbf{0}^T}{\mathbf{0} \ S} \end{bmatrix}, \text{ since } \mathbf{b}_1^T A \mathbf{b}_1 = \lambda \mathbf{b}_1^T \mathbf{b}_1 = \lambda \text{ and } \mathbf{b}_j^T A \mathbf{b}_1 = \mathbf{b}_1^T A \mathbf{b}_j = 0 \ \forall j \neq 1.$$

 $S = S^T \in \mathcal{R}^{n \times n} \Rightarrow \exists$ an orthogonal $C \in \mathcal{R}^{n \times n}$ and a diagonal $L \in \mathcal{R}^{n \times n}$ such that $C^T SC = L$ by the induction hypothesis.

$$\Rightarrow \underbrace{\begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & C^{T} \end{bmatrix}}_{\text{orthogonal } P^{T}} AB \begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & C \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & C^{T} \end{bmatrix} \begin{bmatrix} \lambda & \mathbf{0}^{T} \\ \mathbf{0} & S \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & S \end{bmatrix} \begin{bmatrix} \lambda & \mathbf{0}^{T} \\ \mathbf{0} & C \end{bmatrix} = \begin{bmatrix} \lambda & \mathbf{0}^{T} \\ \mathbf{0} & C^{T} SC \end{bmatrix} = \underbrace{\begin{bmatrix} \lambda & \mathbf{0}^{T} \\ \mathbf{0} & L \end{bmatrix}}_{\text{diagonal } D}$$

11

Theorem 6.15'

For a matrix $A \in \mathcal{C}^{n \times n}$, A is **Hermitian** (i.e., $A = A^H$) if and only if there is an orthonormal basis for \mathcal{C}^n consisting of eigenvectors of A, in which case there exists an **unitary** matrix P and a diagonal matrix D such that $P^H A P = D$.

Proof Follow the proof for **Theorem 6.15**, with \mathcal{R} changed to \mathcal{C} and $(\cdot)^T$ changed to $(\cdot)^H$. Note B and C are unitary, and $L \in \mathcal{R}^{n \times n}$.

Finding an orthonormal basis consisting of eigenvectors of *A* where $A = A^T \in \mathbb{R}^{n \times n}$ or $A = A^H \in \mathbb{C}^{n \times n}$:

(1) Compute all distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$ of *A*.

(2) Determine the corresponding eigenspaces $\mathcal{E}_1, \mathcal{E}_2, ..., \mathcal{E}_k$.

(3) Get an orthonormal basis $\boldsymbol{\mathcal{B}}_i$ for each $\boldsymbol{\mathcal{E}}_i$.

(4) $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_k$ is an orthonormal basis for *A*.

Example:
$$A = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}$$
 has eigenvalues $\lambda_1 = 6$ and $\lambda_2 = 1$,
with corresponding eigenspaces $\mathcal{E}_1 = \text{Span}\{[-1 \ 2 \]^T\}$ and
 $\mathcal{E}_2 = \text{Span}\{[2 \ 1 \]^T\}$, respectively.
 $\Rightarrow \mathcal{B}_1 = \{[-1 \ 2 \]^T/\sqrt{5}\}$ and $\mathcal{B}_2 = \{[2 \ 1 \]^T/\sqrt{5}\}$
 $\Rightarrow P^T A P = D$, where $P = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix}$.

Example: Eigenvalues of *A* are $\lambda_1 = 2$ and $\lambda_2 = 8$. $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix} \Rightarrow \mathcal{E}_1 = \operatorname{Span}\{[-1 \ 1 \ 0]^T, [-1 \ 0 \ 1]^T\} \text{ and}$ $\mathcal{E}_2 = \operatorname{Span}\{[1 \ 1 \ 1 \ 1]^T\}.$ $\Rightarrow \text{Can apply the Gram-Schmidt process to find}$ orthonormal bases for \mathcal{E}_1 and \mathcal{E}_2 . $\Rightarrow \boldsymbol{\mathcal{B}}_{1} \cup \boldsymbol{\mathcal{B}}_{2} = \left\{ \begin{array}{c|c} \overline{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}, \begin{array}{c} \overline{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -2 \end{array}, \begin{array}{c} \overline{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ 1 \end{array} \right\}$ $\Rightarrow P^T A P = D$, where $P = \begin{vmatrix} \overline{\sqrt{2}} & \overline{\sqrt{6}} & \overline{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \underline{-2} & \underline{1} \end{vmatrix} \quad \text{and} \quad D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{vmatrix}.$

Example: Conic sections and quadratic forms

 $ax^2 + 2bxy + cy^2 + dx + ey + f = 0$

- Circle / ellipse
 parabola
- 3. hyperbola

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

How to determine, in general, the type of conic sections based on coefficients a, b, and c?

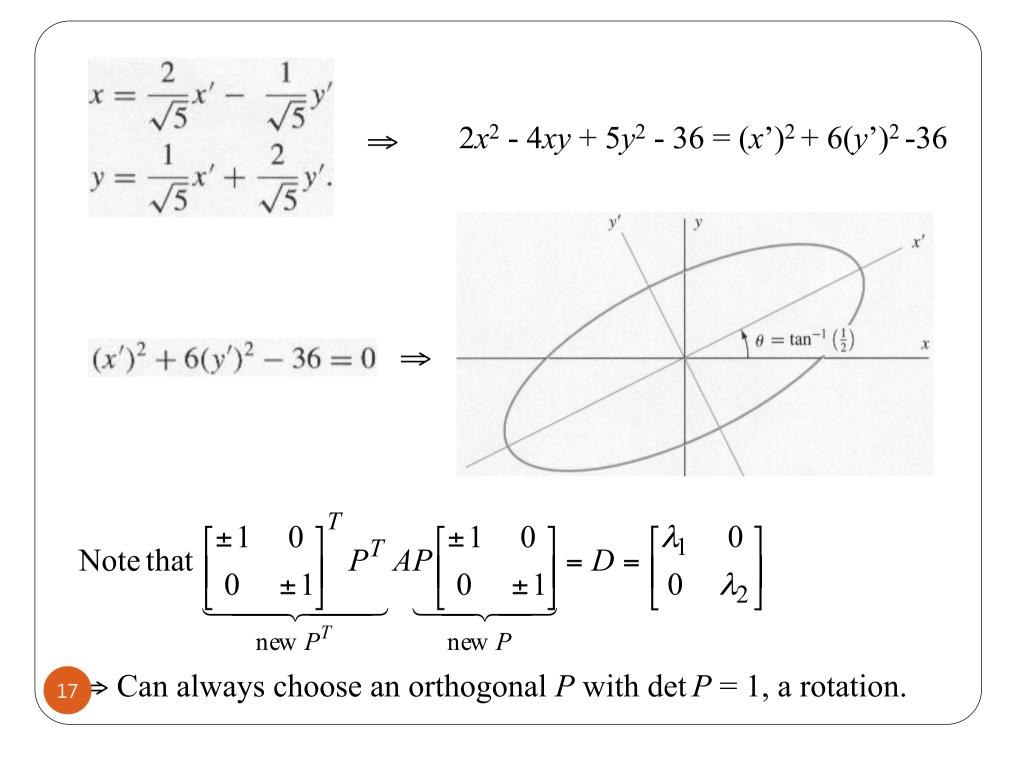
The associate quadratic form $ax^2 + 2bxy + cy^2$ of the quadratic form $ax^2 + 2bxy + cy^2 + dx + ey + f$ can be expressed as $\mathbf{v}^T A \mathbf{v} = (P \mathbf{v}')^T A (P \mathbf{v}') = (\mathbf{v}')^T P^T A P \mathbf{v}' = (\mathbf{v}')^T D \mathbf{v}' = \lambda_1 (x')^2 + \lambda_2 (y')^2$,

with
$$\mathbf{v} = \begin{bmatrix} x & y \end{bmatrix}^T = P\mathbf{v}' = \begin{bmatrix} x' & y' \end{bmatrix}^T$$
,
 $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$, and $P^T A P = D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$.

 \Rightarrow Easy to judge the nature of the corresponding conic section.

Example:
$$2x^2 - 4xy + 5y^2 - 36 = 0$$

$$\Rightarrow A = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix} \Rightarrow \lambda_1 = 1, \lambda_2 = 6 \text{ and } P = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}.$$



Theorem 6.16 (Spectral Decomposition Theorem)

Let A be an $n \times n$ symmetric matrix, and let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ be an orthonormal basis for \mathcal{R}^n consisting of eigenvectors of A with corresponding eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$. Then there exist symmetric matrices P_1, P_2, \cdots, P_n such that the following results hold:

(a) $A = \lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda_n P_n$. : the spectral decomposition. (b) rank $P_i = 1$ for all *i*. (c) $P_i P_i = P_i$ for all *i* and $P_i P_i = O$ if $i \neq i$.

(c)
$$P_i P_i = P_i$$
 for all i , and $P_i P_j = O$ if $i \neq j$.
(d) $P_i \mathbf{u}_i = \mathbf{u}_i$ for all i , and $P_i \mathbf{u}_j = \mathbf{0}$ if $i \neq j$.

Proof (a) Let
$$P = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_n]$$
 and $D = \text{diag}[\lambda_1 \ \lambda_2 \ \cdots \ \lambda_n].$

$$\Rightarrow A = PDP^T = P[\lambda_1 \mathbf{e}_1 \ \lambda_2 \mathbf{e}_2 \ \cdots \ \lambda_n \mathbf{e}_n]P^T$$

$$= [\lambda_1 P \mathbf{e}_1 \ \lambda_2 P \mathbf{e}_2 \ \cdots \ \lambda_n P \mathbf{e}_n]P^T = [\lambda_1 \mathbf{u}_1 \ \lambda_2 \mathbf{u}_2 \ \cdots \ \lambda_n \mathbf{u}_n]P^T$$

$$= [\lambda_1 \mathbf{u}_1 \ \lambda_2 \mathbf{u}_2 \ \cdots \ \lambda_n \mathbf{u}_n] \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix} = \lambda_1 \underbrace{\mathbf{u}_1 \mathbf{u}_1^T}_{P_1 = P_1^T} + \lambda_2 \underbrace{\mathbf{u}_2 \mathbf{u}_2^T}_{P_2 = P_2^T} + \cdots + \lambda_n \underbrace{\mathbf{u}_n \mathbf{u}_n^T}_{P_n = P_n^T}.$$

(b) rank
$$P_i = \operatorname{rank} \mathbf{u}_i \mathbf{u}_i^T = 1$$
.
(c) $P_i P_i = \mathbf{u}_i \mathbf{u}_i^T \mathbf{u}_i \mathbf{u}_i^T = (\mathbf{u}_i^T \mathbf{u}_i) \mathbf{u}_i \mathbf{u}_i^T = 1 \cdot \mathbf{u}_i \mathbf{u}_i^T = P_i \quad \forall i;$
 $P_i P_j = \mathbf{u}_i \mathbf{u}_i^T \mathbf{u}_j \mathbf{u}_j^T = (\mathbf{u}_i^T \mathbf{u}_j) \mathbf{u}_i \mathbf{u}_j^T = 0 \cdot \mathbf{u}_i \mathbf{u}_j^T = 0 \quad \forall i \neq j.$
(d) $P_i \mathbf{u}_i = \mathbf{u}_i \mathbf{u}_i^T \mathbf{u}_i = (\mathbf{u}_i^T \mathbf{u}_i) \mathbf{u}_i = 1 \cdot \mathbf{u}_i \quad \forall i;$
 $P_i \mathbf{u}_j = \mathbf{u}_i \mathbf{u}_i^T \mathbf{u}_j = (\mathbf{u}_i^T \mathbf{u}_j) \mathbf{u}_i = 0 \cdot \mathbf{u}_i = \mathbf{0} \quad \forall i \neq j.$

Example:

$$A = \begin{bmatrix} 3 & -4 \\ -4 & -3 \end{bmatrix}$$
 has eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -5$.

An orthonormal basis consisting of eigenvectors of *A* is $\mathcal{B} = \{[-2 \ 1 \]^T/\sqrt{5}, [1 \ 2 \]^T/\sqrt{5}\} = \{\mathbf{u}_1, \mathbf{u}_2\}.$

$$\Rightarrow P_1 = \mathbf{u}_1 \mathbf{u}_1^T = \begin{bmatrix} \frac{4}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix} \qquad P_2 = \mathbf{u}_2 \mathbf{u}_2^T = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{bmatrix}$$
$$\Rightarrow A = \lambda_1 P_1 + \lambda_2 P_2$$

Homework Set for Section 6.6

Section 6.6: Problems 15, 18, 19, 21, 23, 25, 43, 47, 48, 55, 56, 59, 61, 64