
Chapter 5 in a glance: 
Let T be a linear operator whose standard matrix is A with size n x n.  
Then, a nonzero vector x is said to be an eigenvector of A and T if 
there exists a scalar λ such that 
                                                                                 . 
The scalar λ is called an eigenvalue of T (or A). 
 
A scalar t is an eigenvalue of A if and only if t satisfies the 
characteristic equation of A: 
 
 
A matrix A is diagonalizable (i.e.,                                               such 
that                        ) if and only if A has n linearly independent 
eigenvectors. 
   
 

T (x) = Ax = �x

det (A� tI) = 0
9P invertible, D diagonal

A = PDP�1
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Chapter 6 review: (page 1 of 2) 
1) A subset S of Rn is said to be an orthogonal set if  
 
    An orthogonal set without zero vectors is linearly independent. 
2) For a subspace W of Rn, an orthogonal basis can be found by 
starting with any basis and performing Gram-Schmidt Process. 
3) An orthonormal basis is an orthogonal basis whose vectors 
have unit norms. 
 

8u1,u2 2 S,u1 6= u2 ) u1 · u2 = 0.

4) Let W be a subspace of Rn with an  
orthonormal basis                                . 
Then any vector               can be uniquely 
decomposed as u = w + z 
where                                     . 
 
5) The orthogonal projection w can be 
found as 
 

{w1,w2, · · · ,wk}
u 2 Rn

w 2 W and z 2 W?

orthogonal complement 

w = (u ·w1)w1 + (u ·w2)w2 + · · ·+ (u ·wk)wk
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Chapter 6 review: (page 2 of 2) 
6) Another way of find the orthogonal projection of               on a 
subspace W (using a basis                                      which is not 
required to be orthogonal or orthonormal): 
 
where C (n x k) contains the basis vectors of W. 
 
7) An n x n matrix Q is called “orthogonal” if its columns form an 
orthonormal basis of Rn.  (                  ) 
 
8) A linear operator T on Rn is called orthogonal if its standard 
matrix is orthogonal. It is also “norm-preserving” 
(                                               ) and preserving dot products 
(                                                       ). 
 
 
 

QTQ = I

||T (u)||2 = ||u||2, 8u 2 Rn

u · v = T (u) · T (v), 8u,v 2 Rn

u 2 Rn

B = {u1,u2, · · · ,uk}

w = C(CTC)�1CTu
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T 
Rn Rn

v1

v2 v3

w1

w2
w3

What is a “good” basis? 
 
1)  From the point of view of a linear operator: 
2)  From the point of view of a subspace (or a vector space): 

orthogonal, or even orthonormal. 
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Section 6.6 Symmetric Matrices 

A square matrix A is called a symmetric matrix if AT
= A.

Definition (in Chapter 2)


In this section, we will study some interesting properties of any 
symmetric matrix A. 

In particular, we would like to learn properties of eigenvalues and 
eigenvectors of a symmetric matrix A. 

Questions: 
(1)  Is an eigenvalue of A always real? 
(2) Are any two eigenvectors of A corresponding to distinct 
eigenvalues always orthogonal? 
(3) Is a symmetric matrix A always diagonalizable? 
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*Proposition: If A = AT ∈ Rn×n, then all eigenvalues of A are real. 
  Proof  Let Ax = λx, where x = [ x1  x2    xn ]T ≠ 0.  Since aij = aji, 

Example: Consider 2 2

2 2
2

2 2 2 2

                  

det( ) ( ) .

Since ( ) 4( ) ( ) 4 0,
 has two real eigenvalues.

T a b
A A

b c

tI A t a c t ac b
a c ac b a c b

A

×⎡ ⎤
= = ∈⎢ ⎥

⎣ ⎦

⇒ − = − + + −

+ − − = − + ≥

R

Section 6.6 Symmetric Matrices 

x

⇤T
Ax =

nX

i=1

nX

j=1

aijx
⇤
i xj

=
nX

i=1

aii|xi|2 +
nX

i=1

i�1X

j=1

aij

�
x

⇤
i xj + x

⇤
jxi

�
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Theorem 6.14


Proof 
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*  Proof  Follow the proof for Theorem 6.14, with R changed to C and 
             AT changed to AH. 

Theorem 6.14


Proof  Let u, v ∈ Rn be eigenvectors of A corresponding to eigenvalues 
           λ, µ, respectively. 
           ⇒ 

⇒ (λ - µ) u • v = 0 ⇒ u • v = 0 since λ - µ ≠ 0. 

Theorem 6.14’ (*)


Au · v = �u · v = �(u · v)
= u ·ATv = v ·Av = u · µv = µ(u · v).
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Theorem 6.15

For a matrix A 2 Rn⇥n

, A is symmetric (i.e., A = AT
) if and only if there

is an orthonormal basis for Rn
consisting of eigenvectors of A, in which

case there exists an orthogonal matrix P and a diagonal matrix D such that

PTAP = D.
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Proof  Sufficiency (“if”): A = (PT)-1DP-1 = (P-1)-1DPT = PDPT 

                                         ⇒ AT = (PDPT)T = (PT)TDPT = PDPT = A. 
Necessity* (“only if”): By induction on n. 
The necessity obviously holds for n = 1. 
Assume the necessity holds for n ≥ 1, and consider A ∈ R(n+1)×(n+1). 
A has an eigenvector b1 ∈ Rn+1 corresponding to a real eigenvalue λ. 
⇒ b1 ≠ 0, and ∃ an orthonormal basis B = {b1, b2, …, bn+1} for Rn+1 
     by the Extension Theorem and Gram-Schmidt Process. 

Theorem 6.15

For a matrix A 2 Rn⇥n

, A is symmetric (i.e., A = AT
) if and only if there

is an orthonormal basis for Rn
consisting of eigenvectors of A, in which

case there exists an orthogonal matrix P and a diagonal matrix D such that

PTAP = D.
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Let B = [ b1  b2    bn +1 ]. ⇒ B is orthogonal and 

S = ST ∈ Rn×n ⇒ ∃ an orthogonal C ∈ Rn×n and a diagonal L ∈ Rn×n  
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Theorem 6.15’


Proof  Follow the proof for Theorem 6.15, with R changed to C and 
             (⋅)T changed to (⋅)H.  Note B and C are unitary, and L ∈ R n×n . 

Finding an orthonormal basis consisting of eigenvectors of A 
 where A = AT ∈ Rn×n or A = AH ∈ Cn×n:  
  (1) Compute all distinct eigenvalues λ1, λ2, …, λk of A. 
  (2) Determine the corresponding eigenspaces E1, E2, …, Ek. 
  (3) Get an orthonormal basis B i for each Ei. 
  (4) B = B 1∪ B 2∪∪ B k is an orthonormal basis for A.  
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Example: 

with corresponding eigenspaces E1 = Span{[ -1  2 ]T} and 
E2 = Span{[ 2  1 ]T}, respectively. 
⇒ B1 = {[ -1  2 ]T/√5} and B2 = {[ 2  1 ]T/√5} 
 

⇒ PTAP = D, where 

_ _ 

2 2
2 5

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

1 2 6 01  and .
2 1 0 15

P D
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

has eigenvalues λ1 = 6 and λ2 = 1, 
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Example: Eigenvalues of A are λ1 = 2 and λ2 = 8. 
⇒ E1 = Span{[ -1  1  0 ]T, [ -1 0 1 ]T} and 
     E2 = Span{[ 1  1  1 ]T}. 
⇒ Can apply the Gram-Schmidt process  to find 
     orthonormal bases for E1 and E2. 

⇒ B1∪B2 = 

⇒ PTAP = D, where 

A =

2

4
4 2 2
2 4 2
2 2 4

3

5
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Example: Conic sections and quadratic forms 


ax2 + 2bxy + cy2 + dx + ey + f = 0


1. Circle / ellipse                    
2. parabola                             
3. hyperbola                          


How to determine, in general, the type of conic sections based 
on coefficients a, b, and c?
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The associate quadratic form ax2 + 2bxy + cy2 of the quadratic form 
ax2 + 2bxy + cy2 + dx + ey + f can be expressed as  
vTAv = (Pvʹ′)TA(Pvʹ′) = (vʹ′)TPTAPvʹ′ = (vʹ′)TDvʹ′ = λ1(xʹ′)2 + λ2(yʹ′)2, 
 
 

1

2

0
, and .

0
Ta b

A P AP D
b c

λ

λ
⎡ ⎤⎡ ⎤

= = = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

⇒ Easy to judge the nature of the corresponding conic section. 

Example: 2x2 - 4xy + 5y2 - 36 = 0  

.
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with v = [ x  y ]T = Pvʹ′ = [ xʹ′  yʹ′ ]T,  
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⇒ Can always choose an orthogonal P with det P = 1, a rotation. 17 

2x2 - 4xy + 5y2 - 36 = (x’)2 + 6(y’)2 -36 



Theorem 6.16 (Spectral Decomposition Theorem)


Proof  (a) Let P = [ u1  u2    un ] and D = diag[ λ1  λ2    λn ]. 
⇒ A = PDPT = P[ λ1e1  λ2e2    λnen ]PT 

        = [ λ1Pe1  λ2Pe2    λnPen ]PT = [ λ1u1  λ2u2    λnun ]PT 
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: the spectral decomposition. 
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Example: 

An orthonormal basis consisting of eigenvectors of A is 
B = {[ -2  1 ]T/√5, [ 1  2 ]T/√5} = {u1, u2}. 
 
⇒ 
 
⇒ 

_ _ 

has eigenvalues λ1 = 5 and λ2 = -5. 
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�  Section 6.6: Problems 15, 18, 19, 21, 23, 25, 43, 47, 
48, 55, 56, 59, 61, 64


Homework Set for Section 6.6 
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