/" Section 6.5 Orthogonal Matrices and Operators

Definition

A linear operator on R", T : R" — R" is said to be norm-preserving if

|T()]| = [[u][, Yu € R"

Example: T : linear operator on R* that rotates a vector by 0.
= T is norm-preserving. A, cosf) —sind ]

sinf cosf@

Example: U : linear operator on " that has an eigenvalue A = +1.
=> U 1s not norm-preserving, since for the corresponding
eigenvector v, [|U(V)[| = [[Av]| = [A]-[|v]| = [|v]]
Necessary conditions for a linear operator to be norm-preserving:
LetO=[q, q, --- q, ] be the standard matrix of the linear operator.

Then (1) [[q/f| = [[Qe/| = |le/| = 1, and
@l a)F = 10¢, + CeJF = [0te, + )= e + e =2
e 12 2
@ = ||q,||* + |la,|’, i.e., q; and g, are orthogonal.
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Definitions

1. An n xn matrix @ is called an orthogonal matrix (or simply orthogonal)

if the columns of () form an orthonormal basis for R".
2. A linear operator T on R" is called an orthogonal operator (or simply

orthogonal) if its standard matrix is an orthogonal matrix.

Example: is an orthogonal matrix.

Ay

cosf) —sinf
sinfd cosf

Question: What are the sufficient and necessary conditions for O to
be an orthogonal matrix?

O y
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Theorem 6.9

The following conditions about an n X n matrix () are equivalent:
(a) @ is orthogonal.

b) QTQ = I,.

¢) @ is invertible and Q1 = Q7.

d) Qu-Qv =u-v for any u and v in R". (i.e., Q) preserves dot products.)
e) ||Qu|| = [|u]| for any u in R™. (@ preserves norms.)

Proof (b) <~ (c) By definition of invertible matrices
(@)= (b)with0=[q, @, - q,],9,-q,=1=[0"0];; Vi,
and q;-q;=0=[Q70), Vi =/
= 0'0=1,
)= @ Vu, vER", Qu-Ov=u.0'0Ov=u-0'Ov=u.v.

(d) = (e) Vu € R", ||Ou|| = (Qu-Qu)"*= (u-u)"*= ||ul|.
(e) = (a) The above necessary conditions.

L
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Corollary

(a) @ is orthogonal if and only if the rows of () form an orthonormal basis of
Ry, or equivalently, QQ* = I,,.
(b) Q is orthogonal if and only if Q* is orthogonal.

Proof QTQ = I, & QQT = I, & QT = Q= & (Q7)TQT = I,.

Question: If O is an orthogonal matrix, what is its determinant?

o y
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Theorem 6.10

Let P and () be n x n orthogonal matrices.
(a) det @ = +1.

(b) PQ is an orthogonal matrix.

(¢c) Q" is an orthogonal matrix.

(d) QT is an orthogonal matrix.

Proof (a) Q0" =1, = 1=det(l,) = det(QQ") = det(Q)det(Q")
= det(Q)*. = det(Q) = +1.
(b) (PO)'=Q'P' = QP =(PO)".
(©) (@H'=(@)' ="
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The above results re-stated in terms of linear operators:

If T is a linear operator on R", then then following statements are equivalent.
(a) T is an orthogonal operator.

(b) T(u)-T(v) =u-v for all u and v in R". (T preserves dot products).
(¢) ||T(a)|| = [|u]] for all uin R™. (T preserves norms.)

If T and U are orthogonal operators on R", then TU and T~! are orthogonal
operators on R".

Example: Find an orthogonal Toperator T on R’ such that
- T
T([% 0 T;] )=[010]
T
Letv = [% 0 _T;] and the standard matrix of 7 be A.

= A4 is orthogonal andv=1v=A4"Av=A"e,.
@ => The second row of 4 1s v.
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= The other two rows of A are orthogonal to v.

:>{V}L:{x:{

= A=

<S5l

1

V2

< SIS

0 —% } X = O}, which has an orthonormal basis

1
V2 0
0 |,|1
1
2 0

is an acceptable matrix.

~
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Example: reflection operator 7 about a line £ passing the origin.

Y
Question: Is 7" an orthogonal operator?
- £ (An easier) Question:
P eie®
5 Ttby) xIs T orthogonal if £ 1s the x-axis*
/ b, 1s a unit vector along L.
b, 1s a unit vector perpendicular to L.
T(by) = —by 2 perp

P=1[Db, b,]1san orthogonal matrix.
$B=1{b,, b,} is an orthonormal basis of R”.
[T]4 = diag[1 -1] 1s an orthogonal matrix.

Let the standard matrix of 7be Q. Then [T]4=P'OP, or O =

P[T]4P"' = Qis an orthogonal matrix. => T is an orthogonal operator.

O y

~
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Homework Set for Section 6.5

e Section 6.5: Problems 2, 4, 5, 8, 37, 38, 45,47, 53




(*) Theorem 6.11

Let T be an orthogonal linear operator on R? with standard matrix Q. Then
the following statements are true.

(a) If det @Q = 1, then T is a rotation.
(b) If det Q = —1, then T is a reflection.

Proof O = {Z ((1] =a’+b*=landc*+d* =1

= q = cos0, b = sin0, ¢ = cosu, and d = sinu for some 0 and .
= u=0=90°since[a b] and[c d] are orthogonal

(c. d) 3
"‘

o ® (a, b) / . (a, b)
% | | AXG

' : » (c,d)
\ Case 1: = @ + 90° Case 2: u = 6 — 90"




/Case l: u=0+90°
=> cosu = cos(0 + 90°) = -sinB and sinu = sin(0 + 90°) = cosO.

s cosf? —sinf
= &= sin @ cos 6

and det O = cos’0 + sin’0 = 1.

, the rotation matrix 4,,

Case 2: u=0-90°
=> cosu = cos(0 - 90°) =smnb and sinu = sin(6 - 90°) = -cos0O.

cos ¢ sin @
sinf? —cos?

= ta ] = det O = -cos°0 - sin“0 = -1.

also, det(Q - tI,) = (cos0 - £)(-cosO - £) - sin*0
= -cos’0-sin"0=¢-1.
=> e1genvalues of Q are 1 and -1.
Let b, and b, be eigenvectors of 7'and 7(b,) =b,, 7(b,) = -b,.
= b,.b,=T(b,)-T(b,) = b, -(-b,) = -b,-b,. = b, -b, = 0.
@ => T'1s a reflection about a line along the direction of b,.
8
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Example:

0. .8
Q = [().S _82} = Q0" =1, and detQ = -1.
= ( 1s the standard matrix of a reflection operator.
The eigenvector x corresponding to the eigenvalue 1 satisfies
(Q-1)x=0
= x=[2 1]"1is a solution, and the reflection is with respect to the
line 2y =x or y = (1/2)x.
Example:
Q = {:82 _82} = Q0"=1 and detQ=1.

= (0 = A4, 1s the standard matrix of a rotation operator, where
cosO =-0.6 and sinO =-0.8.

0 = 180° + cos™'(0.6) ~ 233.2°.
L}




/(*) Theorem 6.12

Let T and U be orthogonal operators on R2. Then the following statements are
true.

(a) If both T and U are reflections, then TU is a rotation.

(b) If one of T or U is a reflection and the other is a rotation, then TU is a
reflection.

Proof Let P and Q be the standard matrices of 7"and U, respectively.
= PQ) is the standard matrices of TU, and (PQ)'PQ = Q'P'PO =1
(a) det PO = (det P)(det Q) = (-1)(-1) = 1.

(b) det PO = (det P)(det Q) = -1.




(*) Definition
A function F' : R™ = R" is a rigid motion if F' preserves distance between
vectors, i.e., ||F'(u) — F(v)|| = ||u—v|| for all u,v € R".

Example: Fy, : R'— R" with F (v) =v + b, 1.e, the translation by b is a
rigid motion, and it is a linear operator 1f and only if b = 0.

Example: Any orthogonal operator 7: R'— R" 1s a rigid motion, since
|T(u) - T(v)|| = ||T(a - v)|| =||u - v|| for all u, vE R".




/(*) Theorem 6.13

Let T : R™ = R"™ be a rigid motion such that T'(0) = 0.
(a) [[T(w)]| = |[ul] for all u e R™.

(b) T'(u) - T(v) =u-v for all u,v € R™.

(c) T is linear.

(d) T is an orthogonal operator.

Proof (a) [|T(u) - 7(0)|| = ||T(u) - 0|| = ||u - 0|| = ||u]| for all u € R".
(b) [|T(w) - TV)|* = [|[T(W)|[* - 2T(w) - T(v) + |TW)|* = [u - V|
= [Jul*- 2u-v + |[v]%
(©) | T(u+v) - T(w) - TW)|P* = | T+v)|[* + | T)|* + [|T(V)]
-2T(ut+v) - T(u) - 27(u+v) - 7(v) + 27(u) - 7(v)
= [Jutv]? + [[ul® + [[vI* - 2(utv) -u - 2(u+v) v+ 2u -V
= .- =0, and similarly ||7(cu) - cT(n)||* = 0.
(d) implied by (a) and (c).

For any rigid motion /' on R, define a function 7' : R"— R" with
1(v) = F(v) - F(0). Then T 1s also a rigid motion and 7(0) = 0, so 7'1s

orthogonal operator. Thus F(v) = F, T(v) with b = F(0).
(@ orthogonal op (V) = FpT(V) (0) y
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(*) Definition

For Q € C™*", @ is called an orthogonal matrix if Q*Q = QQ' = I,,, and

Q is called a unitary matrix if Q7 Q = QQ*" = I,.

Theorem 6.9’

For () € C"*", the following conditions are equivalent:
(a) Q is unitary. (i.e., Q7 Q = I,,)

Columns of () form an orthonormal basis for C".

)
) Q 1S mvertlble and Q1 = Q¥
) Q

C
d Qv =u-v for any u and v in C". (i.e., ) preserves dot products.)
e) ||Qu|| = ||u|| for any u in C"™. (@ preserves norms.)

(b
(
(
(

Proof (a) = (b) withQ=[q, q, - q,],[0"0);=q;-q,= 1 Vi,
and [0"0],=q,-q,=0 Vi=].
(a) = (c) by the Invertible Matrix Theorem.
()= (d)Vu,vEC", Qu-Ov=u-0"Ov=u.-0'Ov=u.v.
O @O=@EVucR |ou]-(Qu-0w"=(-w"=|u]

/




(@ = @ la)| = |0¢| = lefl = 1 Vi, and
q;-q,= 0 Vi = j as shown below:

laf* + lla{* + 2Re{q;-q;} = [, + g

=[l0Ce; + e)l* = lle; + e =2 =|a]* + [la
= Re{q;-q;} =0,

laj|* + [la,f* - 2Im{q;-q;} = [|q; + iq,
= ||Q(ej T iei)Hz: ||ej T iein =2= ||‘1j||2 T ”qu2
= Im{q;-q;} =0, where > =-1.

I

(*) Corollary

(a) @ € C™*™ is unitary if and only if the rows of @) form an orthonormal basis
of C™.

(b) @ is unitary if and only if Q¥ is unitary.

o y




(*) Theorem 6.10 (Complex case)
Let P and () be n X n unitary matrices. Then
(a) |det(Q)| = 1.

(b) PQ is a unitary matrix in C"™*"™.

(c) Q7! is a unitary matrix in C"*".




