Section 6.3 Orthogonal Projections

Orthogonal Projection:

The unique vector \mathbf{w} in subspace W that is "closest" to vector \mathbf{u} .

We have $\mathbf{u} = \mathbf{w} + \mathbf{z}$, where \mathbf{z} is always orthogonal to all vectors in W. It is therefore worthy of studying "orthogonal complement" of W, the set of vectors that possess this property.

Definition

The **orthogonal complement** of a nonempty subset S of \mathcal{R}^n , denoted by S^{\perp} (read "S perp), is the set of all vectors in \mathcal{R}^n that are **orthogonal** to every vector in S. That is,

$$\mathcal{S}^{\perp} = \{ \mathbf{v} \in \mathcal{R}^n : \mathbf{v} \cdot \mathbf{u} = 0, \forall \mathbf{u} \in \mathcal{S} \}.$$

Definition

The **orthogonal complement** of a nonempty subset S of \mathcal{R}^n , denoted by S^{\perp} (read "S perp"), is the set of all vectors in \mathcal{R}^n that are **orthogonal** to every vector in S. That is,

$$\mathcal{S}^{\perp} = \{ \mathbf{v} \in \mathcal{R}^n : \mathbf{v} \cdot \mathbf{u} = 0, \forall \mathbf{u} \in \mathcal{S} \}.$$

Definition

The **orthogonal complement** of a nonempty subset S of \mathcal{R}^n , denoted by S^{\perp} (read "S perp"), is the set of all vectors in \mathcal{R}^n that are **orthogonal** to every vector in S. That is,

$$\mathcal{S}^{\perp} = \{ \mathbf{v} \in \mathcal{R}^n : \mathbf{v} \cdot \mathbf{u} = 0, \forall \mathbf{u} \in \mathcal{S} \}.$$

Example:
$$W = \{ \begin{bmatrix} w_1 & w_2 & 0 \end{bmatrix}^T | w_1, & w_2 \in \mathcal{R}. \}$$

 $V = \{ \begin{bmatrix} 0 & 0 & v_3 \end{bmatrix}^T | v_3 \in \mathcal{R}. \}$
Then, $V = W^{\perp}$.
Proof:
(1) for all $\mathbf{v} \in V$ and $\mathbf{w} \in W$, $\mathbf{v} \cdot \mathbf{w} = 0 \Rightarrow V \subseteq W^{\perp}$;
(2) since $\mathbf{e}_1, \mathbf{e}_2 \in W$, all $\mathbf{z} = \begin{bmatrix} z_1 & z_2 & z_3 \end{bmatrix}^T \in W^{\perp}$ must have
 $z_1 = z_2 = 0$ by $\mathbf{z} \cdot \mathbf{e}_1 = \mathbf{z} \cdot \mathbf{e}_2 = 0 \Rightarrow W^{\perp} \subseteq V$.

Property

1. $\mathbf{0} \in S^{\perp}$ for every nonempty subset S of \mathcal{R}^{n} . 2. If $\mathbf{v}, \mathbf{w} \in S^{\perp}$ for a nonempty subset S of \mathcal{R}^{n} , then $\mathbf{v} + \mathbf{w} \in S^{\perp}$ and $c\mathbf{v} \in S^{\perp}$ for any scalar $c \in \mathcal{R}$.

Proof You show it.

Property

The orthogonal complement of any nonempty subset of \mathcal{R}^n is a subspace of \mathcal{R}^n .

Proposition

For any nonempty subset \mathcal{S} of \mathcal{R}^n , $(\text{Span } \mathcal{S})^{\perp} = \mathcal{S}^{\perp}$.

Proposition

Let W be a subspace of \mathcal{R}^n , and \mathcal{B} be a basis of W. Then $\mathcal{B}^{\perp} = W^{\perp}$.

Example: For
$$W = \text{Span} \{\mathbf{u}_1, \mathbf{u}_2\}$$
, where $\mathbf{u}_1 = \begin{bmatrix} 1 & 1 & -1 & 4 \end{bmatrix}^T$ and
 $\mathbf{u}_2 = \begin{bmatrix} 1 & -1 & 1 & 2 \end{bmatrix}^T$, $\mathbf{v} \in W^{\perp}$ if and only if $\mathbf{u}_1 \cdot \mathbf{v} = \mathbf{u}_2 \cdot \mathbf{v} = \mathbf{0}$
i.e., $\mathbf{v} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$ satisfies
 $x_1 + x_2 - x_3 + 4x_4 = 0$
 $x_1 - x_2 + x_3 + 2x_4 = 0$. $\Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -3x_4 \\ x_3 - x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ -1 \\ 0 \\ 1 \end{bmatrix}$
 $\Leftrightarrow \mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a basis for W^{\perp} .
Let $A = \begin{bmatrix} 1 & 1 & -1 & 4 \\ 1 & -1 & 1 & 2 \end{bmatrix}$. Then the above system of linear equation is equivalent to
 $A\mathbf{x} = \mathbf{0}$.

Question 1: Which is correct? 1) $W = \operatorname{Col} A$? 2) $W = \operatorname{Row} A$? Question 2: Which is correct? 1) $W^{\perp} = \operatorname{Null} A$? 2) $W^{\perp} = \operatorname{Null} A^{T}$?

Property

For any real matrix A, $(\text{Row } A)^{\perp} = \text{Null } A$, or $(\text{Col } A)^{\perp} = \text{Null } A^T$.

Proof
$$\mathbf{v} \in (\operatorname{Row} A)^{\perp} \Leftrightarrow \mathbf{w} \cdot \mathbf{v} = 0$$
 for all $\mathbf{w} \in \operatorname{Span} \{\operatorname{rows} \operatorname{of} A\}$
 $\Leftrightarrow A\mathbf{v} = \mathbf{0}.$
Also, $(\operatorname{Col} A)^{\perp} = (\operatorname{Row} A^T) = \operatorname{Null} A^T.$

Theorem 6.7 (Orthogonal Decomposition Theorem)

Let $W \subset \mathcal{R}^n$ be a subspace of \mathcal{R}^n . Then, for any vector \mathbf{u} in \mathcal{R}^n , there exist unique vectors $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$ such that $\mathbf{u} = \mathbf{w} + \mathbf{z}$.

In addition, if $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ is an orthonormal basis for W, then

 $\mathbf{w} = (\mathbf{u} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{u} \cdot \mathbf{v}_2)\mathbf{v}_2 + \cdots + (\mathbf{u} \cdot \mathbf{v}_k)\mathbf{v}_k.$

Proof

Theorem 6.7 (Orthogonal Decomposition Theorem)

Let $W \subset \mathcal{R}^n$ be a subspace of \mathcal{R}^n . Then, for any vector \mathbf{u} in \mathcal{R}^n , there exist unique vectors $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$ such that $\mathbf{u} = \mathbf{w} + \mathbf{z}$.

In addition, if $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ is an orthonormal basis for W, then

 $\mathbf{w} = (\mathbf{u} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{u} \cdot \mathbf{v}_2)\mathbf{v}_2 + \dots + (\mathbf{u} \cdot \mathbf{v}_k)\mathbf{v}_k.$

Proof For all $\mathbf{u} \in \mathcal{R}^n$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$, let $\mathbf{z} = \mathbf{u} - \mathbf{w}$. ⇒ $\mathbf{w} \in W$ and $\mathbf{u} = \mathbf{w} + \mathbf{z}$. Now, $\mathbf{z} \in W^{\perp}$, since by the orthogonality of $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$, $\mathbf{z} \cdot \mathbf{v}_i = (\mathbf{u} - \mathbf{w}) \cdot \mathbf{v}_i = \mathbf{u} \cdot \mathbf{v}_i - \mathbf{w} \cdot \mathbf{v}_i = \mathbf{u} \cdot \mathbf{v}_i - \mathbf{u} \cdot \mathbf{v}_i = 0$. Suppose there is another decomposition $\mathbf{u} = \mathbf{w}' + \mathbf{z}'$, where $\mathbf{w}' \in W$ and $\mathbf{z}' \in W^{\perp}$. Then $\mathbf{w} + \mathbf{z} = \mathbf{w}' + \mathbf{z}' \Rightarrow \mathbf{w} - \mathbf{w}' = \mathbf{z}' - \mathbf{z}$ $\Rightarrow \mathbf{w} - \mathbf{w}' \in W \cap W^{\perp} \Rightarrow (\mathbf{w} - \mathbf{w}') \cdot (\mathbf{w} - \mathbf{w}') = 0 \Rightarrow \mathbf{w} - \mathbf{w}' = \mathbf{0}$ $\Rightarrow \mathbf{w} = \mathbf{w}'$ and $\mathbf{z}' = \mathbf{z}$. Example: Let *W* be the solution space of $x_1 - x_2 + 2x_3 = 0$. Then $\mathbf{u} = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}^T \in \mathcal{R}^3$ can be uniquely decomposed as $\mathbf{u} = \mathbf{w} + \mathbf{z}$ where $\mathbf{w} \in W$ and $\mathbf{v} \in W^{\perp}$. How do you find \mathbf{w} and \mathbf{z} ?

First of all, *W* has an orthonormal basis

$$\mathcal{B} = \{\mathbf{w}_1, \mathbf{w}_2\} = \begin{cases} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix} \end{cases}$$

Then,
$$\mathbf{w} = (\mathbf{u} \cdot \mathbf{w}_1)\mathbf{w}_1 + (\mathbf{u} \cdot \mathbf{w}_2)\mathbf{w}_2 = \frac{4}{\sqrt{2}}\mathbf{w}_1 + \frac{6}{\sqrt{3}}\mathbf{w}_2$$
$$= 2\begin{bmatrix} 1\\1\\0 \end{bmatrix} + 2\begin{bmatrix} -1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\4\\2 \end{bmatrix} \in W, \text{ and}$$
$$\mathbf{z} = \mathbf{u} - \mathbf{w} = \begin{bmatrix} 1\\3\\4 \end{bmatrix} - \begin{bmatrix} 0\\4\\2 \end{bmatrix} = \begin{bmatrix} 1\\-1\\2 \end{bmatrix} \in W^{\perp}.$$

Property

For any subspace W of \mathcal{R}^n ,

 $\dim W + \dim W^{\perp} = n.$

Proof You show that (a basis of W) \cup (a basis of W^{\perp}) = a basis of \mathscr{R}^{n} .

Homework Set for Section 6.3

Section 6.3: Problems 2, 4, 5, 9, 11, 14, 21, 22, 24, 58, 62, 65-67, 71, 72, 75, 79, 82.

Definition

The **orthogonal complement** of a nonempty subset S of \mathcal{R}^n , denoted by S^{\perp} (read "S perp"), is the set of all vectors in \mathcal{R}^n that are **orthogonal** to every vector in S. That is,

$$\mathcal{S}^{\perp} = \{ \mathbf{v} \in \mathcal{R}^n : \mathbf{v} \cdot \mathbf{u} = 0, \forall \mathbf{u} \in \mathcal{S} \}.$$

Theorem 6.7 (Orthogonal Decomposition Theorem)

Let $W \subset \mathcal{R}^n$ be a subspace of \mathcal{R}^n . Then, for any vector \mathbf{u} in \mathcal{R}^n , there exist unique vectors $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$ such that $\mathbf{u} = \mathbf{w} + \mathbf{z}$.

In addition, if $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ is an orthonormal basis for W, then

 $\mathbf{w} = (\mathbf{u} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{u} \cdot \mathbf{v}_2)\mathbf{v}_2 + \dots + (\mathbf{u} \cdot \mathbf{v}_k)\mathbf{v}_k.$

Definitions

Let W be a subspace of \mathcal{R}^n and $\mathbf{u} \in \mathcal{R}^n$. The **orthogonal projection of u** on W is the unique vector \mathbf{w} such that $\mathbf{u} - \mathbf{w} \in W^{\perp}$.

The function $U_W : \mathcal{R}^n \to \mathcal{R}^n$ such that $U_W(\mathbf{u})$ is the orthogonal projection of \mathbf{u} on W for every $\mathbf{u} \in \mathcal{R}^n$ is called the **orthogonal projection operator** on W.

For n = 3 and W a 2-dimensional subspace of \Re^3 , the above definitions match the orthogonal projection defined previously.

Proposition: U_W is linear. Proof If $U_W(\mathbf{u}_1) = \mathbf{w}_1$ and $U_W(\mathbf{u}_2) = \mathbf{w}_2$, then \exists unique $\mathbf{z}_1, \mathbf{z}_2 \in W^{\perp}$ such that $\mathbf{u}_1 = \mathbf{w}_1 + \mathbf{z}_1$ and $\mathbf{u}_2 = \mathbf{w}_2 + \mathbf{z}_2 \Rightarrow \mathbf{u}_1 + \mathbf{u}_2 = \mathbf{w}_1 + \mathbf{w}_2 + \mathbf{z}_1 + \mathbf{z}_2$ $\Rightarrow U_W(\mathbf{u}_1 + \mathbf{u}_2) = \mathbf{w}_1 + \mathbf{w}_2$ since $\mathbf{w}_1 + \mathbf{w}_2 \in W$ and $\mathbf{z}_1 + \mathbf{z}_2 \in W^{\perp}$ Similarly $U_W(c\mathbf{u}) = c\mathbf{w} \ \forall c, \mathbf{u}$ Example: Let *W* be the solution space of $x_1 - x_2 + 2x_3 = 0$, and have an orthonormal basis

$$\mathcal{B} = \{\mathbf{w}_1, \mathbf{w}_2\} = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}$$

 $\mathbf{u} = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}^T \in \mathcal{R}^3$ can be uniquely decomposed as $\mathbf{u} = \mathbf{w} + \mathbf{z}$, where

$$\mathbf{w} = (\mathbf{u} \cdot \mathbf{w}_1)\mathbf{w}_1 + (\mathbf{u} \cdot \mathbf{w}_2)\mathbf{w}_2 = \frac{4}{\sqrt{2}}\mathbf{w}_1 + \frac{6}{\sqrt{3}}\mathbf{w}_2$$
$$= 2\begin{bmatrix}1\\1\\0\end{bmatrix} + 2\begin{bmatrix}-1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\4\\2\end{bmatrix} \in W, \text{ and}$$
$$\mathbf{z} = \mathbf{u} - \mathbf{w} = \begin{bmatrix}1\\3\\4\end{bmatrix} - \begin{bmatrix}0\\4\\2\end{bmatrix} = \begin{bmatrix}1\\-1\\2\end{bmatrix} \in W^{\perp}.$$

Definition

The standard matrix of orthogonal projection operator U_W on a subspace W of \mathcal{R}^n is called the orthogonal projection matrix for W and is denoted as P_W .

Question

Given a subspace W of \mathcal{R}^n , how do we find its orthogonal projection matrix P_W ?

Lemma

Let C be a matrix with linearly independent columns. Then $C^T C$ is invertible.

Proof Suppose $C^T C \mathbf{b} = \mathbf{0}$ for some \mathbf{b} . $\Rightarrow ||C\mathbf{b}||^2 = (C\mathbf{b}) \cdot (C\mathbf{b}) = (C\mathbf{b})^T C\mathbf{b} = \mathbf{b}^T C^T C\mathbf{b} = \mathbf{b}^T \mathbf{0} = \mathbf{0}$. $\Rightarrow C\mathbf{b} = \mathbf{0} \Rightarrow \mathbf{b} = \mathbf{0}$ since C has L.I. columns. Thus $C^T C$ is invertible.

Theorem 6.8

Let C be an $n \times k$ matrix whose columns form a basis for a subspace W of \mathcal{R}^n . Then $P_W = C(C^T C)^{-1} C^T$.

Proof Let $\mathbf{u} \in \mathcal{R}^n$ and $\mathbf{w} = U_W(\mathbf{u})$. Since W = Col C, $\mathbf{w} = C\mathbf{v}$ for some $\mathbf{v} \in \mathcal{R}^k$ and $\mathbf{u} - \mathbf{w} \in W^{\perp} = (\text{Col } C)^{\perp} = (\text{Row } C^T)^{\perp} = \text{Null } C^T$. $\Rightarrow \mathbf{0} = C^T(\mathbf{u} - \mathbf{w}) = C^T\mathbf{u} - C^T\mathbf{w} = C^T\mathbf{u} - C^TC\mathbf{v}$. $\Rightarrow C^T\mathbf{u} = C^TC\mathbf{v}$. $\Rightarrow \mathbf{v} = (C^TC)^{-1}C^T\mathbf{u}$ and $\mathbf{w} = C(C^TC)^{-1}C^T\mathbf{u}$ as C^TC is invertible.

Example: Let *W* be the 2-dimensional subspace of \mathcal{R}^3 with equation $x_1 - x_2 + 2x_3 = 0.$ $\Rightarrow W$ has a basis $\begin{cases} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \end{cases}$, and with $C = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ $P_W = \frac{1}{6} \begin{bmatrix} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 2 \end{bmatrix}$. Note $P_W \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}^T = \begin{bmatrix} 0 & 4 & 2 \end{bmatrix}^T$.

Closest Vector Property

Let W be a subspace of \mathcal{R}^n and **u** be a vector in \mathcal{R}^n . Among all vectors in W, the vector **closest** to **u** is the **orthogonal projection** $U_W(\mathbf{u})$ of **u** on W.

$$\forall \mathbf{w}' \in W, \mathbf{w} - \mathbf{w}' \in W.$$

$$\Rightarrow (\mathbf{u} - \mathbf{w}) \cdot (\mathbf{w} - \mathbf{w}') = 0.$$

$$\Rightarrow ||\mathbf{u} - \mathbf{w}'||^2$$

$$= ||(\mathbf{u} - \mathbf{w}) + (\mathbf{w} - \mathbf{w}')||^2$$

$$= ||\mathbf{u} - \mathbf{w}||^2 + ||\mathbf{w} - \mathbf{w}'||^2$$

$$> ||\mathbf{u} - \mathbf{w}||^2 \quad \forall \mathbf{w}' \neq \mathbf{w}.$$

Closest Vector Property

Let W be a subspace of \mathcal{R}^n and **u** be a vector in \mathcal{R}^n . Among all vectors in W, the vector closest to **u** is the orthogonal projection $U_W(\mathbf{u})$ of **u** on W.

Definition

The **distance from a vector** $\mathbf{u} \in \mathbb{R}^n$ to a subspace W of \mathbb{R}^n is the distance between \mathbf{u} and the orthogonal projection of \mathbf{u} on W.

Example: For the solution space W of $x_1 - x_2 + 2x_3 = 0$ and the vector $\mathbf{v} = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}^T \in \mathcal{R}^3$, the orthogonal projection of \mathbf{v} onto Wis $\mathbf{w} = \begin{bmatrix} 0 & 4 & 2 \end{bmatrix}^T$. Thus the distance from \mathbf{v} to W is $\|\mathbf{v} - \mathbf{w}\| = \|\mathbf{z}\| = \|\begin{bmatrix} 1 - 1 & 2 \end{bmatrix}^T \| = \sqrt{6}$

Homework Set for Section 6.3

Section 6.3: Problems 2, 4, 5, 9, 11, 14, 21, 22, 24, 58, 62, 65-67, 71, 72, 75, 79, 82.

Important: An orthogonal complement of a subspace W is NOT just any shape (e.g., a line) that is "perpendicular" to W(e.g., a plane).

W

V'

Ex. For $W = \{ [w_1 \ w_2 \ 0]^T | w_1, \ w_2 \in \mathcal{R} \}$ (*xy*-plane), $V = \{ [0 \ 0 \ v_3]^T | v_3 \in \mathcal{R} \}$ (*z*-axis) is the orthogonal complement of W.

But $V' = \{ \begin{bmatrix} 1 & 0 & v_3 \end{bmatrix}^T | v_3 \in \mathcal{R} \}$ is NOT an orthogonal complement of W even though the shape of V' looks "perpendicular" to the *xy*-plane!