
Section 6.3 Orthogonal Projections 

Definition

Orthogonal Projection:  
  The unique vector w in subspace W that is “closest” to vector u. 

We have u = w + z, where z is always orthogonal to all vectors in W. 
It is therefore worthy of studying “orthogonal complement” of W, the 
set of vectors that possess this property. 

The orthogonal complement of a nonempty subset S of Rn
, denoted by S?

(read “S perp), is the set of all vectors in Rn
that are orthogonal to every

vector in S. That is,

S?
= {v 2 Rn

: v · u = 0, 8u 2 S} .



S 

S⊥ 

.0 

Example: Example: S = Rn ⇒ S⊥ = {0}, 
            S = {0} ⇒ S⊥ = Rn. 

Definition
The orthogonal complement of a nonempty subset S of Rn

, denoted by S?

(read “S perp”), is the set of all vectors in Rn
that are orthogonal to every

vector in S. That is,

S?
= {v 2 Rn

: v · u = 0, 8u 2 S} .



Example: W = { [ w1  w2  0 ]T | w1,  w2 ∈ R.} 
                 V = { [ 0  0  v3 ]T | v3 ∈ R.} 

 Then, V = W⊥. 
 Proof: 

                (1) for all v ∈ V and w ∈ W, v • w = 0 ⇒ V ⊆ W⊥; 
                (2) since e1, e2 ∈ W, all z = [ z1  z2  z3 ]T ∈ W⊥ must have 
                      z1 = z2 = 0 by z • e1 = z • e2 = 0 ⇒ W⊥ ⊆ V. 

Definition



Property

Proof  You show it. 

Property

Proposition

Proposition



Example: For W = Span{u1, u2}, where u1 = [ 1  1  -1  4 ]T and 
                u2 =[ 1 -1  1  2 ]T, v ∈ W⊥ if and only if u1 • v = u2 • v = 0 
                 

⇔ 

⇔ is a basis for W⊥. 

x1 + x2 � x3 + 4x4 = 0
x1 � x2 + x3 + 2x4 = 0.

i.e., v = [ x1  x2  x3  x4 ]T satisfies 

Let A =


1 1 �1 4

1 �1 1 2

�
. Then the above system of linear equation is

equivalent to

Ax = 0.

Question 1: Which is correct? 1) W = Col A?  2) W = Row A? 
Question 2: Which is correct? 1) W⊥ = Null A?  2) W⊥ = Null AT? 
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Proof  v ∈ (Row A)⊥ ⇔ w • v = 0 for all w ∈ Span{rows of A} 
           ⇔ Av = 0. 
           Also, (Col A)⊥ = (Row AT) = Null AT . 

Property



Theorem 6.7 (Orthogonal Decomposition Theorem)

Proof

Let W ⇢ Rn
be a subspace of Rn

. Then, for any vector u in Rn
, there exist

unique vectors w 2 W and z 2 W?
such that u = w + z.

In addition, if {v1,v2, · · · ,vk} is an orthonormal basis for W , then

w = (u · v1)v1 + (u · v2)v2 + · · ·+ (u · vk)vk.



Proof  For all u ∈ Rn and B = {v1, v2, …, vk}, let z = u - w. 
           ⇒ w ∈ W and u = w + z. 
           Now, z ∈ W⊥, since by the orthogonality of {v1, v2, …, vk},  
                  z • vi = (u - w) • vi = u • vi - w • vi = u • vi - u • vi = 0. 
           Suppose there is another decomposition u = wʹ′ + zʹ′, where 
           wʹ′ ∈ W and zʹ′ ∈ W⊥.  Then w + z = wʹ′ + zʹ′ ⇒ w - wʹ′ = zʹ′ - z 
           ⇒ w - wʹ′ ∈ W∩W⊥ ⇒ (w - wʹ′) • (w - wʹ′) = 0 ⇒ w - wʹ′ = 0 
           ⇒ w = wʹ′ and zʹ′ = z. 

Theorem 6.7 (Orthogonal Decomposition Theorem)
Let W ⇢ Rn

be a subspace of Rn
. Then, for any vector u in Rn

, there exist

unique vectors w 2 W and z 2 W?
such that u = w + z.

In addition, if {v1,v2, · · · ,vk} is an orthonormal basis for W , then

w = (u · v1)v1 + (u · v2)v2 + · · ·+ (u · vk)vk.



Example: Let W be the solution space of x1 - x2 +2x3 = 0.  
Then u = [ 1  3  4 ]T ∈ R3 can be uniquely decomposed as 
u = w + z where w ∈ W and v ∈ W⊥. How do you find w and z? 
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First of all, W has an orthonormal basis 

Then, 



Proof  You show that (a basis of W)∪(a basis of W⊥) = a basis of Rn. 

Property
For any subspace W of Rn

,

dimW + dimW?
= n.



�  Section 6.3: Problems 2, 4, 5, 9, 11, 14, 21, 22, 24, 
58, 62, 65-67, 71, 72, 75, 79, 82. 

Homework Set for Section 6.3 



Definition
The orthogonal complement of a nonempty subset S of Rn

, denoted by S?

(read “S perp”), is the set of all vectors in Rn
that are orthogonal to every

vector in S. That is,

S?
= {v 2 Rn

: v · u = 0, 8u 2 S} .

Theorem 6.7 (Orthogonal Decomposition Theorem)
Let W ⇢ Rn

be a subspace of Rn
. Then, for any vector u in Rn

, there exist

unique vectors w 2 W and z 2 W?
such that u = w + z.

In addition, if {v1,v2, · · · ,vk} is an orthonormal basis for W , then

w = (u · v1)v1 + (u · v2)v2 + · · ·+ (u · vk)vk.



Definitions

For n = 3 and W a 2-dimensional subspace of R3, the above definitions 
match the orthogonal projection defined previously. 

0 
v = UW(v) 

w = UW(u) 

u 
= −z u w

W 
Proposition: UW is linear. 
Proof  If UW(u1) = w1 and UW(u2) = w2, then ∃ unique z1, z2 ∈W⊥ 
           such that u1 = w1+z1 and u2 = w2+z2 ⇒ u1+u2 = w1+w2 + z1+z2 
           ⇒ UW(u1+u2) = w1+w2  since w1+w2 ∈W and z1+z2 ∈W⊥ 

           Similarly UW(cu) = cw ∀c, u 

Let W be a subspace of Rn
and u 2 Rn

. The orthogonal projection of u

on W is the unique vector w such that u�w 2 W?
.

The function UW : Rn ! Rn
such that UW (u) is the orthogonal projection of

u on W for every u 2 Rn
is called the orthogonal projection operator on

W .



Example: Let W be the solution space of x1 - x2 +2x3 = 0, and have 
                an orthonormal basis 

u = [ 1  3  4 ]T ∈ R3 can be uniquely decomposed as 
u = w + z, where 

B = {w1,w2} =
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Definition

Question

The standard matrix of orthogonal projection operator UW on a subspace

W of Rn
is called the orthogonal projection matrix for W and is denoted

as PW .



Lemma

Proof  Suppose CTCb = 0 for some b. 
           ⇒  ||Cb||2 = (Cb) • (Cb) = (Cb)TCb = bTCTCb = bT0 = 0.  
           ⇒  Cb = 0  ⇒  b = 0 since C has L.I. columns. 
           Thus CTC is invertible. 



Theorem 6.8

Proof  Let u ∈ Rn and w = UW(u).  Since W = Col C, w = Cv for some 
            v ∈ Rk and u - w ∈W⊥ = (Col C)⊥ = (Row CT)⊥ = Null CT. 
           ⇒ 0 = CT(u - w) = CTu - CTw = CTu - CTCv. 
           ⇒ CTu = CTCv. 
           ⇒ v = (CTC)-1CTu and w = C(CTC)-1CTu as CTC is invertible. 

Let C be an n⇥ k matrix whose columns form a basis for a subspace W of Rn
.

Then PW = C(CTC)

�1CT .



Example: Let W be the 2-dimensional subspace of R3 with equation 
                x1 - x2 +2x3 = 0. 
 
                ⇒ W has a basis                     ,  and with C =  
 
 
 
                 PW =                          .  Note PW [ 1  3  4 ]T = [ 0  4  2 ]T. 
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Closest Vector Property

W 0 

∀ wʹ′ ∈ W, w - wʹ′ ∈ W. 

⇒ (u - w) • (w - wʹ′) = 0. 

⇒ ||u - wʹ′||2 

        = ||(u - w) + (w - wʹ′)||2 
     = ||u - w||2 + ||w - wʹ′||2 
     > ||u - w||2   ∀ wʹ′ ≠ w. 

w = UW(u) 

u 

−u w

'−u w

'w

Let W be a subspace of Rn
and u be a vector in Rn

. Among all vectors in W ,

the vector closest to u is the orthogonal projection UW (u) of u on W .



Example: For the solution space W of x1 - x2 +2x3 = 0 and the vector 
                 v = [ 1  3  4 ]T ∈ R3, the orthogonal projection of v onto W 
                 is w = [ 0  4  2 ]T.  Thus the distance from v to W is 
                          ||v - w|| = ||z|| = || [ 1 -1  2 ]T || = √6 

_ 

Definition

Closest Vector Property



�  Section 6.3: Problems 2, 4, 5, 9, 11, 14, 21, 22, 24, 
58, 62, 65-67, 71, 72, 75, 79, 82.

Homework Set for Section 6.3 



Important: An orthogonal complement of a subspace W is 
NOT just any shape (e.g., a line) that is “perpendicular” to W 
(e.g., a plane). 
 
Ex. For  W = { [ w1  w2  0 ]T | w1,  w2 ∈ R} (xy-plane), 
                 V = { [ 0  0  v3 ]T | v3 ∈ R} (z-axis) 
is the orthogonal complement of W. 
 
But V’ = { [ 1  0  v3 ]T | v3 ∈ R}  is NOT an orthogonal 
complement of W even though the shape of V’ 
looks “perpendicular” to the xy-plane! 
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V 

V’ 


