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Norm, length, and distance

Definition
Let v be any vector in Rn. Then norm (length) of v, denoted ||v||,
is defined by

||v|| =
√

v2
1 + v2

2 + · · ·+ v2
n

The distance between two vectors u and v in Rn is defined by
||u− v||.
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Norm and distance – an example

Example:

u =

 1
2
3

 , v =

 2
−3
0

 .

⇒ ||u|| =
√

12 + 22 + 32 =
√
14,

||u− v|| =
√
(1− 2)2 + (2− (−3))2 + (3− 0)2 =

√
35.
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Perpendicularity in R2: the Pythagorean Theorem

geometric condition for perpendicularity in R2

||v − u||2 = ||u||2 + ||v||2

algebraic condition for perpendicularity in R2

u1v1 + u2v2 = 0

It can be shown that these two conditions are equivalent.
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Geometric and algebraic conditions

Proposition

||v − u||2 = ||u||2 + ||v||2 is equivalent to u1v1 + u2v2 = 0.

Proof

||v − u||2 = ||u||2 + ||v||2

(v1 − u1)
2 + (v2 − u2)

2 = u2
1 + u2

2 + v2
1 + v2

2

v2
1 − 2u1v1 + u2

1 + v2
2 − 2u2v2 + v2

2 = u2
1 + u2

2 + v2
1 + v2

2

−2u1v1 − 2u2v2 = 0
u1v1 + u2v2 = 0.
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Dot product

Definition
Let u and v be vectors in Rn. The dot product of u and v is
defined by

u · v = u1v1 + u2v2 + · · ·+ unvn.

We say that u and v are orthogonal (perpendicular) if u · v = 0.

Properties
0 is orthogonal to every vector in Rn.
For u, v ∈ R3, u and v are perpendicular if and only if
u · v = 0.

7 / 22



The Geometry of Vectors
dot product

Pythagoream Theorem
Cauchy-Schwarz Inequality
Complex dot product

Dot product

Definition
Let u and v be vectors in Rn. The dot product of u and v is
defined by

u · v = u1v1 + u2v2 + · · ·+ unvn.

We say that u and v are orthogonal (perpendicular) if u · v = 0.

Properties
0 is orthogonal to every vector in Rn.
For u, v ∈ R3, u and v are perpendicular if and only if
u · v = 0.

7 / 22



The Geometry of Vectors
dot product

Pythagoream Theorem
Cauchy-Schwarz Inequality
Complex dot product

Dot product

Properties
The dot product can also be represented by the matrix product

uTv =
[

u1 u2 · · · un
]


v1
v2
...
vn


= u1v1 + u2v2 + · · ·+ unvn

= u · v.
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Properties of dot products

Theorem 6.1
Let u and v be vectors in Rn and c be a scalar in R.
(a) u · u = ||u||2.
(b) u · u = 0 if and only if u = 0.
(c) u · v = v · u.
(d) u · (v + w) = u · v + u ·w.
(e) (v + w) · u = v · u + w · u.
(f) (cu) · v = c(u · v) = u · (cv).
(g) ||cu|| = |c |||u||.

Proof
All results may be proven easily using the definition.
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Properties of dot products

Corollary

For c ∈ R, u, v ∈ Rn, cu · v has a clear meaning: (cu) · v or
c(u · v).
For c1, c2, · · · , cp ∈ R,u, v1, v2, · · · , vp ∈ Rn,

u · (c1v1+c2v2+ · · ·+cpvp) = c1u ·v1+c2u ·v2+ · · ·+cpu ·vp

and

(c1v1+c2v2+ · · ·+cpvp) ·u = c1v1 ·u+c2v2 ·u+ · · ·+cpvp ·u.
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Example

Example
Show that

||2u + 3v||2 = 4||u||2 + 12(u · v) + 9||v||2

||2u + 3v||2 = (2u + 3v) · (2u + 3v)
= (2u) · (2u + 3v) + (3v) · (2u + 3v)
= (2u) · (2u) + (2u) · (3v) + (3v) · (2u) + (3v) · (3v)
= 4(u · u) + 6(u · v) + 6(v · u) + 9(v · v)
= 4||u||2 + 6(u · v) + 6(v · u) + 9||v||2

= 4||u||2 + 12(u · v) + 9||v||2
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Pythagoream Theorem in Rn

Theorem 6.2
Let u and v be vectors in Rn. Then u and v are orthogonal if and
only if

||u + v||2 = ||u||2 + ||v||2.

Proof.

||u + v||2 = ||u||2 + 2u · v + ||v||2

= ||u||2 + ||v||2

if and only if
u · v = 0.
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Orthogonal projection of a vector onto a line

orthogonal projection

v: any vector in R2.
u: any nonzero vector on L.
w: orthogonal projection of v onto L , w = cu.
z: v −w.

0 = z ·u = (v−w) ·u = (v− cu) ·u = v ·u− cu ·u = v ·u− c ||u||2

⇒ c =
v · u
||u||2

and w =
v · u
||u||2

u.
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Orthogonal projection of a vector onto a line

orthogonal projection

Distance from P (tip of v) to L:∣∣∣∣∣∣∣∣v − v · u
||u||2

u
∣∣∣∣∣∣∣∣
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Orthogonal projection of a vector onto a line

example

L =

{[
x
y

]
∈ R2

∣∣∣∣ y = (1/2)x
}

and v =

[
4
1

]
.

Let u =

[
2
1

]
. Then

w =
u · u
||u||2

u =
9
5

[
2
1

]
and the distance from the tip of v to L is∣∣∣∣∣∣∣∣[ 4

1

]
− 9

5

[
2
1

]∣∣∣∣∣∣∣∣ = 1
5

∣∣∣∣∣∣∣∣[ 2
−4

]∣∣∣∣∣∣∣∣ = 2
5

√
5
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Cauchy-Schwarz Inequality

Theorem 6.3
For any vectors u and v in Rn, we have

|u · v| ≤ ||u|| · ||v||

Proof.
This inequality holds when u = 0. Assume u 6= 0. Then

||v||2 =

∣∣∣∣∣∣∣∣ v · u||u||2
u + v − v · u

||u||2
u
∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣ v · u||u||2
u
∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣v − v · u

||u||2
u
∣∣∣∣∣∣∣∣2

≥
∣∣∣∣∣∣∣∣ v · u||u||2

u
∣∣∣∣∣∣∣∣2 =

|v · u|2

||u||2
.

Note:
(

v·u
||u||2 · u

)(
v − v·u

||u||2 u
)
= (v·u)2
||u||2 −

(v·u)2
||u||4 u · u = 0.
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Cauchy-Schwarz Inequality

Example
For any real numbers a1, a2, a3, b1, b2, and b3,

|a1b1 + a2b2 + a3b3| ≤
√

a2
1 + a2

2 + a2
3

√
b2
1 + b2

2 + b2
3.
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Triangle Inequality

Theorem 6.4
For any vectors u and v in Rn, we have

||u + v|| ≤ ||u||+ ||v||.

Proof.

||u + v||2 = ||u||2 + 2u · v + ||v||2

≤ ||u||2 + 2||u|| · ||v||+ ||v||2

= (||u||+ ||v||)2
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Complex dot product

For vectors in Cn, the definition of dot products, as well as those of
norm, distance, and orthogonality, needs to be modified a little bit.

Definition
Let u and v be vectors in Cn. The dot product of u and v is
defined by

u · v = u∗1v1 + u∗2v2 + · · ·+ u∗nvn.

We say that u and v are orthogonal (perpendicular) if u · v = 0.
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Complex dot product

Definition
Let v be any vector in Cn. Then norm (length) of v, denoted ||v||,
is defined by

||v|| =
√

v2
1 + v2

2 + · · ·+ v2
n

The distance between two vectors u and v in Cn is defined by
||u− v||.
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Complex dot product

Theorem 6.1’
Let u and v be vectors in Cn and c be a scalar in C.
(a) u · u = ||u||2.
(b) u · u = 0 if and only if u = 0.
(c) u · v = (v · u)∗.
(d) u · (v + w) = u · v + u ·w.
(e) (v + w) · u = v · u + w · u.
(f) (cu) · v = c∗(u · v) = u · (c∗v).
(g) ||cu|| = |c |||u||.
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Homework set for Section 6.1

Section 6.1
Problems 7, 15, 81-89, 92, 95
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