Chapter 6: Orthogonality Section 6.1: The Geometry of Vectors

Linear Algebra

National Taiwan University

April 2, 2014

1/22

Table of contents

The Geometry of Vectors norm and distance perpendicularity in R²

2 dot product

- Pythagoream Theorem
- Cauchy-Schwarz Inequality
- Complex dot product

Norm, length, and distance

Definition

Let **v** be any vector in \mathcal{R}^n . Then norm (length) of **v**, denoted $||\mathbf{v}||$, is defined by

$$|\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

The distance between two vectors ${\bf u}$ and ${\bf v}$ in \mathcal{R}^n is defined by $||{\bf u}-{\bf v}||.$

The Geometry of Vectors dot product

norm and distance perpendicularity in \mathcal{R}^2

Norm and distance – an example

Example:

$$\mathbf{u} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2\\-3\\0 \end{bmatrix}.$$
$$\Rightarrow ||\mathbf{u}|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14},$$
$$||\mathbf{u} - \mathbf{v}|| = \sqrt{(1-2)^2 + (2-(-3))^2 + (3-0)^2} = \sqrt{35}.$$

< □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト 三 の Q (~ 4 / 22 The Geometry of Vectors dot product $\operatorname{perpendicularity}$ in \mathcal{R}^2

Perpendicularity in \mathcal{R}^2 : the Pythagorean Theorem

geometric condition for perpendicularity in \mathcal{R}^2

 $||{\bf v}-{\bf u}||^2=||{\bf u}||^2+||{\bf v}||^2$

algebraic condition for perpendicularity in \mathcal{R}^2

 $u_1v_1 + u_2v_2 = 0$

It can be shown that these two conditions are equivalent.

Geometric and algebraic conditions

Proposition

$$||\mathbf{v} - \mathbf{u}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$
 is equivalent to $u_1v_1 + u_2v_2 = 0$.

Geometric and algebraic conditions

Proposition

$$||\mathbf{v} - \mathbf{u}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$
 is equivalent to $u_1v_1 + u_2v_2 = 0$.

Proof

$$||\mathbf{v} - \mathbf{u}||^{2} = ||\mathbf{u}||^{2} + ||\mathbf{v}||^{2}$$

$$(v_{1} - u_{1})^{2} + (v_{2} - u_{2})^{2} = u_{1}^{2} + u_{2}^{2} + v_{1}^{2} + v_{2}^{2}$$

$$v_{1}^{2} - 2u_{1}v_{1} + u_{1}^{2} + v_{2}^{2} - 2u_{2}v_{2} + v_{2}^{2} = u_{1}^{2} + u_{2}^{2} + v_{1}^{2} + v_{2}^{2}$$

$$-2u_{1}v_{1} - 2u_{2}v_{2} = 0$$

$$u_{1}v_{1} + u_{2}v_{2} = 0.$$

Dot product

Definition

Let **u** and **v** be vectors in \mathcal{R}^n . The dot product of **u** and **v** is defined by

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n.$$

We say that **u** and **v** are orthogonal (perpendicular) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Dot product

Definition

Let **u** and **v** be vectors in \mathcal{R}^n . The dot product of **u** and **v** is defined by

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n.$$

We say that **u** and **v** are orthogonal (perpendicular) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Properties

- **0** is orthogonal to every vector in \mathcal{R}^n .
- For $\mathbf{u}, \mathbf{v} \in \mathcal{R}^3$, \mathbf{u} and \mathbf{v} are perpendicular if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Dot product

Properties

• The dot product can also be represented by the matrix product

$$\mathbf{u}^{\mathsf{T}}\mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
$$= u_1v_1 + u_2v_2 + \cdots + u_nv_n$$
$$= \mathbf{u} \cdot \mathbf{v}.$$

Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

Properties of dot products

Theorem 6.1

Let **u** and **v** be vectors in \mathcal{R}^n and *c* be a scalar in \mathcal{R} . (a) $\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2$. (b) $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$. (c) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$. (d) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$. (e) $(\mathbf{v} + \mathbf{w}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{u}$. (f) $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$. (g) $||c\mathbf{u}|| = |c|||\mathbf{u}||$.

Proof

All results may be proven easily using the definition.

Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

Properties of dot products

Corollary

• For $c \in \mathcal{R}$, $\mathbf{u}, \mathbf{v} \in \mathcal{R}^n$, $c\mathbf{u} \cdot \mathbf{v}$ has a clear meaning: $(c\mathbf{u}) \cdot \mathbf{v}$ or $c(\mathbf{u} \cdot \mathbf{v})$.

• For
$$c_1, c_2, \cdots, c_p \in \mathcal{R}, \mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p \in \mathcal{R}^n$$
,

$$\mathbf{u} \cdot (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p) = c_1 \mathbf{u} \cdot \mathbf{v}_1 + c_2 \mathbf{u} \cdot \mathbf{v}_2 + \dots + c_p \mathbf{u} \cdot \mathbf{v}_p$$

and

$$(c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p)\cdot\mathbf{u}=c_1\mathbf{v}_1\cdot\mathbf{u}+c_2\mathbf{v}_2\cdot\mathbf{u}+\cdots+c_p\mathbf{v}_p\cdot\mathbf{u}.$$

Example

Example

Show that

$$||2\mathbf{u} + 3\mathbf{v}||^2 = 4||\mathbf{u}||^2 + 12(\mathbf{u} \cdot \mathbf{v}) + 9||\mathbf{v}||^2$$

Example

Example

Show that

$$||2\mathbf{u} + 3\mathbf{v}||^2 = 4||\mathbf{u}||^2 + 12(\mathbf{u} \cdot \mathbf{v}) + 9||\mathbf{v}||^2$$

$$||2\mathbf{u} + 3\mathbf{v}||^{2} = (2\mathbf{u} + 3\mathbf{v}) \cdot (2\mathbf{u} + 3\mathbf{v})$$

= $(2\mathbf{u}) \cdot (2\mathbf{u} + 3\mathbf{v}) + (3\mathbf{v}) \cdot (2\mathbf{u} + 3\mathbf{v})$
= $(2\mathbf{u}) \cdot (2\mathbf{u}) + (2\mathbf{u}) \cdot (3\mathbf{v}) + (3\mathbf{v}) \cdot (2\mathbf{u}) + (3\mathbf{v}) \cdot (3\mathbf{v})$
= $4(\mathbf{u} \cdot \mathbf{u}) + 6(\mathbf{u} \cdot \mathbf{v}) + 6(\mathbf{v} \cdot \mathbf{u}) + 9(\mathbf{v} \cdot \mathbf{v})$
= $4||\mathbf{u}||^{2} + 6(\mathbf{u} \cdot \mathbf{v}) + 6(\mathbf{v} \cdot \mathbf{u}) + 9||\mathbf{v}||^{2}$
= $4||\mathbf{u}||^{2} + 12(\mathbf{u} \cdot \mathbf{v}) + 9||\mathbf{v}||^{2}$

≣ ୬९୯ 11/22

・ロト ・四ト ・ヨト ・ヨト

The Geometry of Vectors dot product Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

Pythagoream Theorem in \mathcal{R}^n

Theorem 6.2

Let u and v be vectors in $\mathcal{R}^n.$ Then u and v are orthogonal if and only if

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2.$$

Proof.

$$\begin{aligned} ||\mathbf{u} + \mathbf{v}||^2 &= ||\mathbf{u}||^2 + 2\mathbf{u} \cdot \mathbf{v} + ||\mathbf{v}||^2 \\ &= ||\mathbf{u}||^2 + ||\mathbf{v}||^2 \end{aligned}$$

if and only if

$$\mathbf{u} \cdot \mathbf{v} = 0.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $0 = \mathbf{z} \cdot \mathbf{u} = (\mathbf{v} - \mathbf{w}) \cdot \mathbf{u} = (\mathbf{v} - c\mathbf{u}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} - c\mathbf{u} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} - c||\mathbf{u}||^2$ $\Rightarrow c = \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^2} \text{ and } \mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^2} \mathbf{u}.$ イロト イポト イヨト イヨト 二日 13 / 22

z: v - w.

w: orthogonal projection of v onto \mathcal{L} , w = cu.

u: any nonzero vector on \mathcal{L} .

v: any vector in \mathcal{R}^2 .

orthogonal projection

The Geometry of Vectors

Orthogonal projection of a vector onto a line

dot product

Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

The Geometry of Vectors dot product Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

Orthogonal projection of a vector onto a line

orthogonal projection

Distance from P (tip of **v**) to \mathcal{L} :

$$\left| \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^2} \mathbf{u} \right|$$

The Geometry of Vectors dot product Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

Orthogonal projection of a vector onto a line

example

$$\mathcal{L} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{R}^2 \ \middle| \ y = (1/2)x \right\} \text{ and } \mathbf{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}.$$

Let $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Then

$$\mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^2} \mathbf{u} = \frac{9}{5} \begin{bmatrix} 2\\1 \end{bmatrix}$$

and the distance from the tip of \boldsymbol{v} to $\mathcal L$ is

$$\left| \left| \left[\begin{array}{c} 4\\1 \end{array} \right] - \frac{9}{5} \left[\begin{array}{c} 2\\1 \end{array} \right] \right| \right| = \frac{1}{5} \left| \left| \left[\begin{array}{c} 2\\-4 \end{array} \right] \right| \right| = \frac{2}{5} \sqrt{5}$$

Cauchy-Schwarz Inequality

Theorem 6.3

For any vectors **u** and **v** in \mathcal{R}^n , we have

 $|\textbf{u}\cdot\textbf{v}| \leq ||\textbf{u}||\cdot||\textbf{v}||$

Cauchy-Schwarz Inequality

Theorem 6.3

For any vectors \mathbf{u} and \mathbf{v} in \mathcal{R}^n , we have

 $|\mathbf{u}\cdot\mathbf{v}|\leq||\mathbf{u}||\cdot||\mathbf{v}||$

Proof.

This inequality holds when u=0. Assume $u\neq 0.$ Then

$$\begin{split} ||\mathbf{v}||^{2} &= \left\| \left| \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^{2}} \mathbf{u} + \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^{2}} \mathbf{u} \right\|^{2} = \left\| \left| \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^{2}} \mathbf{u} \right\|^{2} + \left\| \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^{2}} \mathbf{u} \right\|^{2} \\ &\geq \left\| \left| \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^{2}} \mathbf{u} \right\|^{2} = \frac{|\mathbf{v} \cdot \mathbf{u}|^{2}}{||\mathbf{u}||^{2}}. \end{split}$$
Note: $\left(\frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^{2}} \cdot \mathbf{u} \right) \left(\mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^{2}} \mathbf{u} \right) = \frac{(\mathbf{v} \cdot \mathbf{u})^{2}}{||\mathbf{u}||^{2}} - \frac{(\mathbf{v} \cdot \mathbf{u})^{2}}{||\mathbf{u}||^{4}} \mathbf{u} \cdot \mathbf{u} = 0.$

16 / 22

The Geometry of Vectors dot product Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

Cauchy-Schwarz Inequality

Example

For any real numbers a_1, a_2, a_3, b_1, b_2 , and b_3 ,

$$|a_1b_1+a_2b_2+a_3b_3| \leq \sqrt{a_1^2+a_2^2+a_3^2}\sqrt{b_1^2+b_2^2+b_3^2}.$$

Triangle Inequality

Theorem 6.4

For any vectors **u** and **v** in \mathcal{R}^n , we have

$$||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||.$$

Proof.

$$\begin{aligned} ||\mathbf{u} + \mathbf{v}||^2 &= ||\mathbf{u}||^2 + 2\mathbf{u} \cdot \mathbf{v} + ||\mathbf{v}||^2 \\ &\leq ||\mathbf{u}||^2 + 2||\mathbf{u}|| \cdot ||\mathbf{v}|| + ||\mathbf{v}||^2 \\ &= (||\mathbf{u}|| + ||\mathbf{v}||)^2 \end{aligned}$$

Complex dot product

For vectors in C^n , the definition of dot products, as well as those of norm, distance, and orthogonality, needs to be modified a little bit.

Definition

Let **u** and **v** be vectors in C^n . The dot product of **u** and **v** is defined by

$$\mathbf{u}\cdot\mathbf{v}=u_1^*v_1+u_2^*v_2+\cdots+u_n^*v_n.$$

We say that **u** and **v** are orthogonal (perpendicular) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

Complex dot product

Definition

Let **v** be any vector in C^n . Then norm (length) of **v**, denoted $||\mathbf{v}||$, is defined by

$$||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

The distance between two vectors u and v in \mathcal{C}^n is defined by ||u-v||.

Pythagoream Theorem Cauchy-Schwarz Inequality Complex dot product

Complex dot product

Theorem 6.1'

Let u and v be vectors in
$$C^n$$
 and c be a scalar in C.
(a) $\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2$.
(b) $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.
(c) $\mathbf{u} \cdot \mathbf{v} = (\mathbf{v} \cdot \mathbf{u})^*$.
(d) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$.
(e) $(\mathbf{v} + \mathbf{w}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{u}$.
(f) $(c\mathbf{u}) \cdot \mathbf{v} = c^*(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c^*\mathbf{v})$.
(g) $||c\mathbf{u}|| = |c|||\mathbf{u}||$.

The Geometry of Vectors dot product Pythagoream Theorem Cauchy-Schwarz Inequali Complex dot product

Homework set for Section 6.1

Section 6.1

Problems 7, 15, 81-89, 92, 95