
Section 5.3  Diagonalization of Matrices 

Definition


Example: stochastic matrix 

probability matrix of a sample 
person’s residence movement 

: current population of the city and suburbs 

: population distribution in the next year 

: population distribution after m years 

p =


500
700

�

Ap =


.85 .03
.15 .97

� 
500
700

�

Amp

City
 Suburbs


.15


.03


.85                                                    .97



.85 .03
.15 .97

�
= A

From 
City    Suburbs 

To           City 
          Suburbs 



Question


A = PDP�1 where P =


�1 1
1 5

�
, D =


.82 0
0 1

�

A3 = (PDP�1)(PDP�1)(PDP�1) = PD3P�1

Am = PDmP�1

=


�1 1
1 5

� 
(.82)m 0

0 1

� 
�1 1
1 5

��1

=
1

6


1 + 5(.82)m 1� (.82)m

5� 5(.82)m 5 + (.82)m

�



Not all matrices are diagonalizable. 

⇒ A2 = 0. 

If A = PDP-1 for some invertible P and diagonal D, then  
A2 = PD2P-1 = 0. 
⇒  D2 = 0  ⇒  D = 0 since D is diagonal  ⇒  A = 0. Ö  

Question


A =


0 1
0 0

�

Let’s observe some examples before answering this question. 



A =


1 1
0 1

�

Characteristic  
polynomial 

Eigenvalues Eigenspaces 

B =


2 1
0 1

�

C =


0 1
�1 0

�

I =


1 0
0 1

�



A =

2

4
�1 0 0
0 1 2
0 2 1

3

5

B =

2

4
3 0 0
0 1 2
0 2 1

3

5

C =

2

4
�1 0 0
0 3 1
0 0 3

3

5

Characteristic  
polynomial 

Eigenvalues Eigenspaces 



Theorem 5.2




Proof  A ∈ Rn×n is diagonalizable. 
        ⇔ ∃ an invertible P = [ p1  p2    pn ] ∈ Rn×n and a diagonal 
             D = diag[d1 d2  dn]. ∈ Rn×n such that A = PDP-1. 
        ⇔ AP = PD and P = [ p1  p2    pn ] is invertible. 
        ⇔ [ Ap1  Ap2    Apn ] = Pdiag[d1 d2  dn].  

      and P = [ p1  p2    pn ] is invertible. 
⇔ Api = dipi for i = 1, 2, …, n and {p1, p2, …, pn} is L.I.. 
⇔ pi is an eigenvector of A corresponding to the eigenvalue di 
     and B  = {p1, p2, …, pn} is a basis for Rn. 

= P
⇥
d1e1 d2e2 · · · dnen

⇤

=
⇥
P (d1e1) P (d2e2) · · · P (dnen)

⇤

=
⇥
d1(Pe1) d2(Pe2) · · · dn(Pen)

⇤

=
⇥
d1p1 d2p2 · · · dnpn

⇤
.



Steps to diagonalize a given A ∈ Rn×n: 
 
 
1. Find n eigenvalues (repeated or not) for A and form a diagonal 
    matrix D with eigenvalues on the diagonal; 
 
 
 
 
2. Find n L.I. eigenvectors corresponding to these eigenvalues, if 
    possible, and form an invertible P ∈ Rn×n; 
 
 
 
 
3. A = PDP-1. 

reduced row 
 echelon form ⎥

⎦

⎤
⎢
⎣

⎡−
=⇒

1
1

1p

reduced row 
 echelon form ⎥

⎦

⎤
⎢
⎣

⎡
=⇒
5
1

2p
 

invertible 

⇒ eigenvalues of A = { 0.82, 1 }, and 

A =


.85 .03
.15 .97

�

det (A� tI2) = det


.85� t .03
.15 .97� t

�
= (t� .82)(t� 1)

D =


.82 0
0 1

�

A� I2

A� .82I2

P =


�1 1
1 5

�


1 1
0 0

�


1 �.2
0 0

�



Every A ∈ Rn×n has n eigenvalues (counting repeated ones) if complex 
eigenvalues are allowed.  However, some matrices may not have n L.I. 
eigenvectors even if complex eigenvectors are allowed. 



Theorem 5.3




Proof  Let A be an n×n matrix with eigenvectors v1, v2, …, vm having 
corresponding distinct eigenvalues λ1, λ2, …, λm.  Suppose the set of 
eigenvectors are L.D..  As eigenvectors are nonzero, Theorem 1.9 
implies vk = c1v1+c2v2+ … +ck-1vk-1 for some k ∈ [2, m] and scalars 
c1, c2, …, ck-1. 
⇒ Avk = c1Av1+c2Av2+ … +ck-1Avk-1 
⇒ λkvk = c1λ1v1+c2λ2v2+ … +ck-1λk-1vk-1 
⇒ 0 = c1(λ1-λk) v1+c2(λ2-λk)v2+ … +ck-1(λk-1-λk)vk-1  
⇒ c1 = c2 = … = ck-1 = 0 
⇒ vk = 0, a contradiction. 

(-λk) 

Theorem 5.3




Corollary 2: If A ∈ R n×n has n distinct eigenvalues, then Rn has a basis 
                    consisting of eigenvectors of A, i.e., A is diagonalizable. 

Corollary 1: Let S1, S2, …, Sp be subsets of p eigenspaces of a square 
                    matrix corresponding to p distinct eigenvalues.  If Si is L.I. 
                    for all i = 1, 2, …, p, then the set S1∪S2 ∪  ∪Sp is L.I.. 



Definition

For A 2 Rn⇥n, the characteristic polynomial of A may be factored into a
product of linear factors if

det(A� tIn) = (�1)n(t� �1)(t� �2) · · · (t� �n).

Here, �i, i = 1, 2, . . . , n do not have to be distinct, but �i 2 R.

Test for a Diagonalizable Matrix 
 
An n x n matrix A is diagonalizable if and only if both the 
following conditions are met. 
 
1)  The characteristic polynomial of A factors into a product of 

linear factors. 
2)   For each eigenvalue λ of A, the multiplicity of λ equals the 

dimension of the corresponding eigenspace (n – rank(A-λIn)). 
 



Proof “if” Follow the previous diagonalization stepts.  
                 Condition (1) ⇒ there are n eigenvalues for Step 1. 
                 Condition (2) and Theorem 5.3 ⇒ there are n L.I. 
                 eigenvectors in Step 2. 
“only if” If Condition (1) fails, then A has less than n eigenvalues 
               (counting repeated ones), and (sum of all geometric 
               multiplicities) ≤ (sum of all algebraic multiplicities) < n, 
               which means that there are no enough L.I. eigenvectors to 
               form a basis. 
               If Condition (2) fails, then there are no enough L.I. 
               eigenvectors to form a basis. 
 
Note: Condition (1) always holds if complex eigenvalues are allowed. 



Example: The characteristic polynomial of 

is -(t + 1)2(t - 3) ⇒  eigenvalues: 3, -1, -1 ⇒  
the eigenspaces corresponding to the eigenvalue 3 and -1 have bases 

and , respectively 

⇒ A = PDP-1, where  

and 

1 0 0
0 1 2
0 2 1

A
−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B1 =  

0
1
1

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

B2 =  

1 0
0 , 1
0 1

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥
⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎩ ⎭

0 1 0
1 0 1
1 0 1

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

3 0 0
0 1 0
0 0 1

D
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦



Example: The characteristic polynomials of 

are -(t+1)(t2+4), -(t+1)(t+4)2, -(t+1)(t+4)2, -(t+1)(t2-4), respectively 
 

7 3 6
0 4 0
3 3 2

B
− − −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

0 2 1
2 0 2
0 0 1

A
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

6 3 1
5 2 1
2 3 5

C
− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

3 2 1
3 4 3
8 8 6

M
−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦



Example: The characteristic polynomials of 

are -(t+1)(t2+4), -(t+1)(t+4)2, -(t+1)(t+4)2, -(t+1)(t2-4), respectively 
 
⇒ A can not be diagonalized as it has only one (real) eigenvalue 
     B can be diagonalized as nullity of B - (-4)I3 is 2 
     C can be not diagonalized as nullity of C - (-4)I3 is 1 
     M can be diagonalized as M has three distinct eigenvalues -1, -2, 2 

7 3 6
0 4 0
3 3 2

B
− − −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

0 2 1
2 0 2
0 0 1

A
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

6 3 1
5 2 1
2 3 5

C
− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

3 2 1
3 4 3
8 8 6

M
−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦



�  Section 5.3: Problems 1, 3, 5, 9, 13, 17, 29, 31, 33, 
35, 41, 43, 47 

Homework Set for Section 5.3 


