CHAPTER 5

EIGENVALUES, EIGENVECTORS, AND DIAGONALIZATION

Definition

Let T be a linear operator on \mathcal{R}^n . A nonzero vector \mathbf{v} in \mathcal{R}^n is called an **eigenvector** of T if $T(\mathbf{v})$ is a multiple of \mathbf{v} , that is, $T(\mathbf{v}) = \lambda \mathbf{v}$ for some scalar λ . The scalar λ is called the **eigenvalue** of T that corresponds to \mathbf{v} .

Note: In these definitions $\mathbf{v} \in \mathbf{R}^n$ and $\lambda \in \mathbf{R}$, but sometimes it is necessary to extend the domain of *T* to allow $\mathbf{v} \in \mathbf{C}^n$ and $\lambda \in \mathbf{C}$.

Example: reflection operator T about the line y = (1/2)x

 \mathbf{b}_1 is an eigenvector of *T* corresponding to the eigenvalue 1.

 \mathbf{b}_2 is an eigenvector of *T* corresponding to the eigenvalue -1.

Definition

Let A be an $n \times n$ matrix. A nonzero vector \mathbf{v} in \mathcal{R}^n is called an **eigenvector** of A if $A\mathbf{v} = \lambda \mathbf{v}$ for some scalar λ . The scalar λ is called the **eigenvalue** of A that corresponds to \mathbf{v} .

Note: In these definitions $\mathbf{v} \in \mathcal{R}^n$ and $\lambda \in \mathcal{R}$, but sometimes it is necessary to allow $\mathbf{v} \in \mathcal{C}^n$ and $\lambda \in \mathcal{C}$.

Example:
$$A = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

Example:

$$A = \begin{bmatrix} 5 & 2 & 1 \\ -2 & 1 & -1 \\ 2 & 2 & 4 \end{bmatrix} \mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \Rightarrow$$
$$A\mathbf{v} = \begin{bmatrix} 5 & 2 & 1 \\ -2 & 1 & -1 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = 4\mathbf{v} \Rightarrow$$
$$A(c\mathbf{v}) = c(A\mathbf{v}) = c(4\mathbf{v}) = 4(c\mathbf{v}), \forall c \in \mathcal{R}$$

An eigenvector of *A* corresponds to a unique eigenvalue.

An eigenvalue of *A* has infinitely many eigenvectors.

Property

The eigenvectors and corresponding eigenvalues of a linear operator are the same as those of its standard matrix.

Proof $T(\mathbf{v}) = \lambda \mathbf{v} \iff A\mathbf{v} = \lambda \mathbf{v}$.

Property

Let A be an $n \times n$ matrix with eigenvalue λ . The eigenvectors of A corresponding to λ are the nonzero solutions of $(A - \lambda I_n)\mathbf{v} = \mathbf{0}$.

Proof $A\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0} \Leftrightarrow A\mathbf{v} - \lambda I_n \mathbf{v} = \mathbf{0} \Leftrightarrow (A - \lambda I_n) \mathbf{v} = \mathbf{0}.$

Definition

For $A \in \mathbb{R}^{n \times n}$, if λ is an eigenvalue of A, then the null space of $A - \lambda I_n$ is called the **eigenspace** of A corresponding to eigenvalue λ .

Definition

If λ is an eigenvalue of a linear operator T on \mathcal{R}^n , then the set of vectors \mathbf{v} in \mathcal{R}^n such that $T(\mathbf{v}) = \lambda \mathbf{v}$ is called the **eigenspace** of T corresponding to eigenvalue λ .

Example: to check 3 and -2 are eigenvalues of the linear operator

$$T\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} -2x_2\\ -3x_1+x_2 \end{array}\right]$$

consider its standard matrix $A = \begin{bmatrix} 0 & -2 \\ -3 & 1 \end{bmatrix}$

The rank of $A - 3I_2$ is 1, so its null space is not the zero space, and every nonzero vector in the null space is an eigenvector of T corresponding to the eigenvalue 3.

Similarly, the rank of $A + 2I_2$ is 1, so its null space is not the zero space, and every nonzero vector in the null space is an eigenvector of *T* corresponding to the eigenvalue -2.

Example: to check that 3 is an eigenvalue of *B* and find a basis for the corresponding eigenspace, where

$$B = \left[\begin{array}{rrrr} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{array} \right]$$

find the reduced row echelon form of *B* - $3I_3$ and the solution set of $(B - 3I_3)\mathbf{x} = \mathbf{0}$, respectively, to be

$$\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Thus {[1 0 0]^T, [0 1 1]^T} is a basis of the eigenspace

of *B* corresponding to the eigenvalue 3.

Example: some square matrices and linear operators on \Re^n have no real eigenvalues, like the 90°-rotation matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

$$T(\mathbf{x}) = A\mathbf{x} = \lambda \mathbf{x}$$

An eig. vec. $\mathbf{x} \implies$ unique eig. val. λ .

An eig. val. $\lambda ==$ multiple eig. vectors **x**.

===> The set of all eig. vectors corr. to λ is

$$\{\mathbf{x} \in \mathcal{R}^n : (A - \lambda I_n)\mathbf{x} = \mathbf{0}\} \setminus \{\mathbf{0}\}$$

eigenspace corr. to the eig. val. λ

7

Homework Set for Sections 5.1

Section 5.1: Problems 1, 3, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59