Vector spaces and Linear Transformations Standard Subspace Basis Basis \mathbb{R}^n $(\boldsymbol{\mathcal{B}})$ $\{\mathbf e_1, \mathbf e_2, \cdots, \mathbf e_n\}$ Spans Standard Linear Matrix Transformation **B**-Matrix \boldsymbol{A} Defines

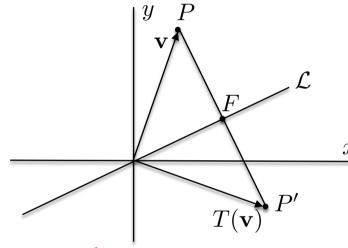
$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \cdots \ T(\mathbf{e}_n)]$$

Section 4.5 Matrix Representations of Linear Operators

Definition

A linear operator on \mathbb{R}^n is a linear transformation from \mathbb{R}^n to \mathbb{R}^n .

Example: reflection about a line \mathcal{L} through the origin in \mathcal{R}^2



 $\mathbf{b}_1 = T(\mathbf{b}_1)$

 $T(\mathbf{b}_2) = -\mathbf{b}_2$

special case: \mathcal{L} is the x-axis

$$T'\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} x_1 \\ -x_2 \end{array}\right]$$

the standard matrix of T'

$$\begin{bmatrix} T'(\mathbf{e}_1) & T'(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & -\mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

general case:

 \mathbf{b}_2

consider the basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}.$

$$[T(\mathbf{b}_1)]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad [T(\mathbf{b}_2)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{B}} & [T(\mathbf{b}_2)]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Definition

Let T be a linear operator on \mathbb{R}^n and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}$ be a basis for \mathbb{R}^n . The matrix

$$\begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{B}} & [T(\mathbf{b}_2)]_{\mathcal{B}} & \cdots & [T(\mathbf{b}_n)]_{\mathcal{B}} \end{bmatrix}$$

is called the **matrix representation** of T with respect to \mathcal{B} or the \mathcal{B} -matrix of T. It is denoted $[T]_{\mathcal{B}}$.

Question

What is $[T]_{\mathcal{E}}$ where \mathcal{E} is the standard basis for \mathcal{R}^n ?

The Definition is an extension of the **standard matrix** to general basis. For $\mathcal{B} = \mathcal{E}$, the standard basis in \mathcal{R}^n ,

$$[T]_{\mathcal{E}} = [[T(\mathbf{b}_1)]_{\mathcal{E}} \quad [T(\mathbf{b}_2)]_{\mathcal{E}} \quad \cdots \quad [T(\mathbf{b}_n)]_{\mathcal{E}}] = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)]$$

Example: How do we find $[T]_{\mathcal{B}}$?

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + x_3 \\ x_1 + x_2 \\ -x_1 - x_2 + 3x_3 \end{bmatrix} \quad \mathcal{B} = \left\{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}\right\} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$$

How do we find $[T]_{\mathcal{B}}$?

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + x_3 \\ x_1 + x_2 \\ -x_1 - x_2 + 3x_3 \end{bmatrix} \quad \mathcal{B} = \left\{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}\right\} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$$

$$T(\mathbf{b}_1) = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}, T(\mathbf{b}_2) = \begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix}, T(\mathbf{b}_3) = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}$$

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} \Rightarrow [T(\mathbf{b}_1)]_{\mathcal{B}} = B^{-1}T(\mathbf{b}_1) = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$$

$$[T(\mathbf{b}_2)]_{\mathcal{B}} = B^{-1}T(\mathbf{b}_2) = \begin{bmatrix} -9\\3\\6 \end{bmatrix} \qquad [T(\mathbf{b}_3)]_{\mathcal{B}} = B^{-1}T(\mathbf{b}_3) = \begin{bmatrix} 8\\-3\\1 \end{bmatrix}$$

$$\Rightarrow [T]_{\mathcal{B}} = \begin{vmatrix} 3 & -9 & 8 \\ -1 & 3 & -3 \\ 1 & 6 & 1 \end{vmatrix}$$

Preview Question

Let T be a linear operator on \mathbb{R}^n and A be the standard matrix of T. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}$ be an (ordered) basis for \mathbb{R}^n and $B = [\begin{array}{ccc} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{array}]$.

Q: How can we write $[T]_{\mathcal{B}}$ in terms of matrices A and B?

Answer

- 1. No, it is not always possible to determine $[T]_{\mathcal{B}}$ from A and B?
- 2. $[T]_{\mathcal{B}} = B^{-1}A$?
- 3. $[T]_{\mathcal{B}} = AB^{-1}$?
- 4. $[T]_{\mathcal{B}} = B^{-1}AB$?
- 5. None of the above?

Theorem 4.12

Let T be a linear operator on \mathbb{R}^n , \mathcal{B} a basis for \mathbb{R}^n , B the matrix whose columns are the vectors in \mathcal{B} , and A the standard matrix of T. Then $[T]_{\mathcal{B}} = B^{-1}AB$, or equivalently, $A = B[T]_{\mathcal{B}}B^{-1}$.

Proof Suppose
$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$$
. Let $B = [\mathbf{b}_1 \mathbf{b}_2 \cdots \mathbf{b}_n]$.

$$[T]_{\mathcal{B}} = [T(\mathbf{b}_1)]_{\mathcal{B}} [T(\mathbf{b}_2)]_{\mathcal{B}} \cdots [T(\mathbf{b}_n)]_{\mathcal{B}}]$$

$$= [A\mathbf{b}_1]_{\mathcal{B}} [A\mathbf{b}_2]_{\mathcal{B}} \cdots [A\mathbf{b}_n]_{\mathcal{B}}]$$

$$= [B^{-1}(A\mathbf{b}_1) B^{-1}(A\mathbf{b}_2) \cdots B^{-1}(A\mathbf{b}_n)]$$

$$= [(B^{-1}A)\mathbf{b}_1 (B^{-1}A)\mathbf{b}_2 \cdots (B^{-1}A)\mathbf{b}_n]$$

$$= B^{-1}A[\mathbf{b}_1 \mathbf{b}_2 \cdots \mathbf{b}_n]$$

$$= B^{-1}AB.$$

$$\Rightarrow B[T]_{\mathcal{B}}B^{-1} = B(B^{-1}AB)B^{-1} = A.$$

Definition

For $A, B \in \mathbb{R}^{n \times n}$, if $B = P^{-1}AP$ for some invertible P, then A is **similar** to B.

Property: If A is similar to B, then B is similar to A. Thus we say A and B are similar.

Example:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + x_3 \\ x_1 + x_2 \\ -x_1 - x_2 + 3x_3 \end{bmatrix} \qquad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\}$$

The standard matrix of *T* is

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & T(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix}$$

$$\Rightarrow [T]_{\mathcal{B}} = B^{-1}AB = \begin{bmatrix} 3 & -9 & 8 \\ -1 & 3 & -3 \\ 1 & 6 & 1 \end{bmatrix}$$

Example: Let T be a linear operator on \mathcal{R}^3

$$T\left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\2\\1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 1\\0\\1 \end{bmatrix}\right) = \begin{bmatrix} 3\\-1\\1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\1\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$

$$\mathbf{b}_1 \qquad \mathbf{c}_1 \qquad \mathbf{b}_2 \qquad \mathbf{c}_2 \qquad \mathbf{b}_3 \qquad \mathbf{c}_3$$

Q: Can T be uniquely determined?

 $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is L.I. $\Rightarrow \mathcal{B}$ is a basis. Let $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3]$.

$$[T]_{\mathcal{B}} = \begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{B}} & [T(\mathbf{b}_2)]_{\mathcal{B}} & [T(\mathbf{b}_3)]_{\mathcal{B}} \end{bmatrix}$$

$$= \begin{bmatrix} B^{-1}T(\mathbf{b}_1) & B^{-1}T(\mathbf{b}_2) & B^{-1}T(\mathbf{b}_3) \end{bmatrix}$$

$$= \begin{bmatrix} B^{-1}\mathbf{c} & B^{-1}\mathbf{c}_2 & B^{-1}\mathbf{c}_3 \end{bmatrix}$$

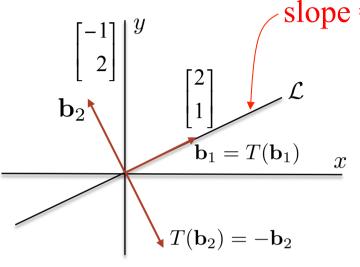
$$= B^{-1} \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 \end{bmatrix}.$$

$$A = B[T]_{\mathcal{B}}B^{-1} = BB^{-1} \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{c}_{3} \end{bmatrix} B^{-1} = \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{c}_{3} \end{bmatrix} B^{-1}$$

$$= \begin{bmatrix} 1 & 0 & 2 \\ .5 & 1.5 & -1.5 \\ -.5 & -.5 & 1.5 \end{bmatrix}$$
Yes, *T* is uniquely determined by the item are a finite in a gaza of a basis.

Yes, T is uniquely determined by its images of a basis.

Example: reflection operator T about the line y = (1/2)x



slope = 1/2

Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}, B = [\mathbf{b}_1 \mathbf{b}_2],$ and A be the standard matrix of T.

$$[T]_{\mathcal{B}} = \begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{B}} & [T(\mathbf{b}_2)]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\Rightarrow A = B[T]_{\mathcal{B}}B^{-1} = \begin{bmatrix} .6 & .8 \\ .8 & -.6 \end{bmatrix}$$

$$\Rightarrow T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = A\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} .6 & .8 \\ .8 & -.6 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} .6x_1 + .8x_2 \\ .8x_1 - .6x_2 \end{array}\right]$$

Homework Set for Sections 4.5

Section 4.5: Problems 1, 3, 7, 9, 13, 15, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37