Section 4.4 Coordinate Systems

Theorem 4.10

Let $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a basis for a subspace V of \mathcal{R}^n . Any vector \mathbf{v} in V can be uniquely represented as a linear combination of the vectors in \mathcal{B} ; that is, there are unique scalars a_1, a_2, \dots, a_k such that $\mathbf{v} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_k\mathbf{u}_k$.

Proof Since **B** spans **V**, the existence of $a_1, a_2, ..., a_k$ is assured. For any $b_1, b_2, ..., b_k$ making $\mathbf{v} = b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2 + \cdots + b_k \mathbf{u}_k$, we have $\mathbf{0} = \mathbf{v} - \mathbf{v} = (a_1 - b_1)\mathbf{u}_1 + (a_2 - b_2)\mathbf{u}_2 + \cdots + (a_k - b_k)\mathbf{u}_k$ $\Rightarrow a_1 - b_1 = a_2 - b_2 = \cdots = a_k - b_k = 0$, since **B** is L.I..

Definition

Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be a basis for \mathcal{R}^n . For each \mathbf{v} in \mathcal{R}^n , there are unique scalars c_1, c_2, \dots, c_n such that $\mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$. The vector

$$\left[egin{array}{c} c_1 \ c_2 \ dots \ c_n \end{array}
ight] \in \mathcal{R}^n \qquad ext{ordered basis}$$

is called the **coordinate vector** of \mathbf{v} relative to \mathcal{B} or the \mathcal{B} -coordinate vector of \mathbf{v} . We denote the \mathcal{B} -coordinate vector \mathbf{v} by $[\mathbf{v}]_{\mathcal{B}}$.

Example:

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\} : \text{a basis of } \mathcal{R}^3.$$

$$[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 6 \\ -2 \end{bmatrix} \implies \mathbf{u} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 6 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + (-2) \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ -7 \\ 5 \end{bmatrix}$$

Example: For the same basis \mathcal{B} above and $\mathbf{v} = [1 - 4 \ 4]^T$, to find $[\mathbf{v}]_{\mathcal{B}}$, we need to determine the unique scalars c_1 , c_2 , c_3 such that

$$c_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \\ 4 \end{bmatrix}$$

$$\Rightarrow c_1 = -6, c_2 = 4, c_3 = 3 \text{ and } [\mathbf{v}]_{\mathcal{B}} = [-6 \ 4 \ 3]^T.$$

Example

Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$ be the standard basis of \mathcal{R}^n . Then for all $\mathbf{v} \in \mathcal{R}^n$, $[\mathbf{v}]_{\mathcal{E}} = ?$

Example

Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be an (ordered) basis of \mathcal{R}^n . Then for all i = 1, 2, ..., n, $[\mathbf{b}_i]_{\mathcal{B}} = ?$

Question

Let \mathcal{B} be a basis for \mathcal{R}^n and B be the matrix whose columns are the vectors in \mathcal{B} .

How do we write $[\mathbf{v}]_{\mathcal{B}}$ in terms of \mathbf{v} and B?

Example: Consider

$$\mathbf{v} = \begin{bmatrix} 1 \\ -4 \\ 4 \end{bmatrix} \text{ and } \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\}$$

Theorem 4.11

Let \mathcal{B} be a basis for \mathcal{R}^n and B be the matrix whose columns are the vectors in \mathcal{B} . Then B is invertible and, for every vector \mathbf{v} in \mathcal{R}^n , $B[\mathbf{v}]_{\mathcal{B}} = \mathbf{v}$, or equivalently, $[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v}$.

Proof Let
$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}, \mathbf{v} \in \mathcal{R}^n, \text{ and } [\mathbf{v}]_{\mathcal{B}} = [c_1 \ c_2 \cdots c_n]^T.$$

$$\Rightarrow \mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \cdots + c_n \mathbf{b}_n$$

$$= [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n] [\mathbf{v}]_{\mathcal{B}}$$

$$= B[\mathbf{v}]_{\mathcal{B}}, \text{ where } B \text{ is invertible, since it has } n \text{ L.I. columns.}$$

Example:
$$\mathbf{v} = \begin{bmatrix} 1 & -4 & 4 \end{bmatrix}^T$$
 and

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\} \implies [\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v} = \begin{bmatrix} -6\\4\\3 \end{bmatrix}$$

The equation of the ellipse in the x', y'-coordinate system is

$$\frac{(x')^2}{3^2} + \frac{(y')^2}{2^2} = 1$$

Consider the basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}.$

$$\mathbf{b}_1 = A_{45} \circ \mathbf{e}_1 \qquad \mathbf{b}_2 = A_{45} \circ \mathbf{e}_2$$

$$\mathbf{v} = \left[egin{array}{c} x \\ y \end{array}
ight], \qquad [\mathbf{v}]_{\mathcal{B}} = \left[egin{array}{c} x' \\ y' \end{array}
ight]$$

$$B = [\mathbf{b}_1 \ \mathbf{b}_2] = [A_{45} \circ \mathbf{e}_1 \ A_{45} \circ \mathbf{e}_2] = A_{45} \circ [\mathbf{e}_1 \ \mathbf{e}_2] = A_{45} \circ I_2 = A_{45} \circ$$

$$[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v} = B^T\mathbf{v}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = B^T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \\ -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \end{bmatrix}$$

Thus, the equation of the ellipse in the *x*, *y*-coordinate system is

$$\frac{(x')^2}{3^2} + \frac{(y')^2}{2^2} = 1$$

$$\Rightarrow \frac{\left(\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)^2}{3^2} + \frac{\left(-\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)^2}{2^2} = 1$$

or
$$13x^2 - 10xy + 13y^2 = 72$$

Example

Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$ be the standard basis of \mathcal{R}^n . Then for all $\mathbf{v} \in \mathcal{R}^n$, $[\mathbf{v}]_{\mathcal{E}} = ?$

(1) \mathbf{e}_1 ; (2) \mathbf{e}_2 ; (3) \mathbf{e}_n ; (4) \mathbf{v} ; (5) None of the above

Example

Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be an (ordered) basis of \mathcal{R}^n . Then for all i = 1, 2, ..., n, $[\mathbf{b}_i]_{\mathcal{B}} = ?$

(1) \mathbf{b}_1 ; (2) \mathbf{b}_i ; (3) \mathbf{e}_i ; (4) \mathbf{e}_n ; (5) None of the above

Homework Set for Section 4.4

Section 4.4: Problems 1, 5, 7, 9, 11, 13, 15, 19, 23, 27, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49