Section 4.2 Basis and Dimension

In Sec. 4.1, we learned that the span of any nonempty subset of \mathcal{R}^n is a subspace of \mathcal{R}^n .

Question 1: Reversely, can any subspace of \mathcal{R}^n be written as the span of a subset of \mathcal{R}^n ?

Question 2: If so, is there a "best criterion" to choose such a subset that "spans" (generates) such a subspace of \mathcal{R}^n ?

Section 4.2 Basis and Dimension

Definition

Let V be a nonzero subspace of \mathcal{R}^n . A **basis** for V is a **linearly independent** generation set for V.

Example: the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ of \mathcal{R}^n .

The pivot columns of a matrix form a basis for its column space.

Proof By Theorem 2.4 of Section 2.3.

Property

The pivot columns of a matrix form a basis for its column space.

Example:

Theorem 4.3 (Reduction Theorem)

Let S be a finite generating set for a nonzero subspace V of \mathcal{R}^n . Then S can be reduced to a basis for V by removing vectors from S.

Proof Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$. Let $A = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$. $\Rightarrow \operatorname{Col} A = \operatorname{Span} {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k} = V$, and the set of pivot columns of A, which is a subset of S, form a basis of V.

Theorem 4.3 (Reduction Theorem)

Let S be a finite generating set for a nonzero subspace V of \mathcal{R}^n . Then S can be reduced to a basis for V by removing vectors from S.

Corollary 1: If S is a finite generating set of \mathcal{R}^n , then S has a subset forming a basis of \mathcal{R}^n .

Corollary 2: Any generating set, and hence every basis, of \mathcal{R}^n must contain at least *n* vectors.

Proof Following the proof of the main theorem, $\text{Col } A = V = \Re^n$. $\Rightarrow \text{ rank } A = n \text{ by Theorem } 1.6 \Rightarrow k \ge n.$

Every subset of \mathcal{R}^n with more than *n* vectors is L.D. (Section 1.7). \Rightarrow Every basis of \mathcal{R}^n contains at most *n* vectors.

⁵ > Every basis of \mathcal{R}^n contains exactly *n* vectors.

Theorem 4.4 (Extension Theorem)

Let S be a linearly independent subset of a nonzero subspace V of \mathcal{R}^n . Then S can be extended to a basis for V by inclusion of additional vectors. In particular, every nonzero subspace has a basis.

Proof If SpanS = V, then S is a basis itself. If Span $S \neq V$, then $\exists v_1 \in V \setminus \text{Span } S$, and $S \cup \{v_1\}$ is L.I.. If Span[$S \cup \{v_1\}$] = *V*, then $S \cup \{v_1\}$ is a basis and $S \subseteq S \cup \{v_1\}$. If Span[$S \cup \{v_1\}$] $\neq V$, then $\exists v_2 \in V \setminus \text{Span}[(S \cup \{v_1\})]$, and $S \cup \{\mathbf{v}_1, \mathbf{v}_2\}$ is L.I.. If $\cdots \Rightarrow \exists v_1, v_2, \dots, v_k$ such that $S \cup \{v_1, v_2, \dots, v_k\}$ is L.I. and Span[$S \cup \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$] = V, where $k \leq n$. \Rightarrow *S* \cup {**v**₁, **v**₂, ..., **v**_k} is a basis and *S* \subseteq *S* \cup {**v**₁, **v**₂, ..., **v**_k}. In particular, let V be a nonzero subspace. $\Rightarrow \exists \mathbf{u} \neq \mathbf{0}$ in V. \Rightarrow can start from the L.I. subset $S = \{\mathbf{u}\}$ to get a basis for V.

Let V be a nonzero subspace of \mathcal{R}^n . Then any two bases of V contain the same number of vectors.

Proof Suppose $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ and $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ are two bases of *V*. Let $A = [\mathbf{u}_1 \, \mathbf{u}_2 \cdots \mathbf{u}_k]$ and $B = [\mathbf{v}_1 \, \mathbf{v}_2 \cdots \mathbf{v}_p]$. Since $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ spans *V*, $\exists \mathbf{c}_i \in \mathcal{R}^k$ s.t. $A\mathbf{c}_i = \mathbf{v}_i$ for all *i*

Let V be a nonzero subspace of \mathcal{R}^n . Then any two bases of V contain the same number of vectors.

Definition

The number of vectors in a basis for a subspace V of \mathcal{R}^n is called the **dimension** of V and is denoted dim V. Also, dim $\{\mathbf{0}\} = 0$.

A basis is

1) a generating set for a subspace with the fewest possible vectors;

2) a L.I. subset of a subspace that is as large as possible.

Definition

The number of vectors in a basis for a subspace V of \mathcal{R}^n is called the **dimension** of V and is denoted dim V. Also, dim $\{\mathbf{0}\} = 0$.

Example: Is $\boldsymbol{\mathcal{C}}$ a basis of V?

$$\mathcal{C} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\} \quad V = \left\{ \begin{bmatrix} v_1\\v_2\\v_3 \end{bmatrix} \in \mathcal{R}^3 : v_1 - v_2 + 2v_3 = 0 \right\}$$

1. Check that both vectors in $\boldsymbol{\mathcal{C}}$ belong to V:

$$1 - 1 + 2(0) = 0$$
 and $-1 - 1 + 2(1) = 0$

2. Check that $\boldsymbol{\mathcal{C}}$ is L.I.: neither is a multiple of each other.

3. Check that \mathcal{C} spans $V: \exists c_1$ and c_2 such that

$$c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} -1\\1\\1 \end{bmatrix} = \begin{bmatrix} v_1\\v_2\\v_3 \end{bmatrix}$$

Or use the following Theorem (will be proved in the next slide):

Theorem 4.6

Let V be a subspace of \mathcal{R}^n with dimension k. Then every **linearly independent** subset of V contains at most k vectors; or equivalently, any finite subset of V containing more than k vectors is **linearly dependent**.

Let V be a subspace of \mathcal{R}^n with dimension k. Then every **linearly independent** subset of V contains at most k vectors; or equivalently, any finite subset of V containing more than k vectors is **linearly dependent**.

Proof Let $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ be a L.I. subset of *V*. By the Extension Theorem, this set can be extended to a basis $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p, ..., \mathbf{v}_k\}$ for *V*. It follows that $p \le k$.

Let V be a k-dimensional subspace of \mathcal{R}^n . Suppose that S is a subset of V with exact k vectors. Then S is a basis for V if either S is linearly independent or S is a generating set for V.

Proof Let $S \subseteq V$ be L.I. and have k vectors. \Rightarrow By the Extension Theorem, \exists a basis \mathscr{B} s.t. $S \subseteq \mathscr{B}$. $\Rightarrow \mathscr{B}$ has k vectors, since dim. V = k. $\Rightarrow \mathscr{B} = S$. Let $S \subseteq V$ be a generating set for V and have k vectors. \Rightarrow By the Reduction Theorem, \exists a basis $\mathscr{B} \subseteq S$. $\Rightarrow \mathscr{B}$ has k vectors, since dim. V = k. $\Rightarrow \mathscr{B} = S$.

12

Let V be a k-dimensional subspace of \mathcal{R}^n . Suppose that S is a subset of V with exact k vectors. Then S is a basis for V if either S is linearly independent or S is a generating set for V.

Example: Is \mathscr{B} a basis of V? $\mathcal{B} = \left\{ \begin{bmatrix} 1\\ -1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1\\ -1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1\\ -1 \end{bmatrix} \right\} V = \left\{ \begin{bmatrix} v_1\\ v_2\\ v_3\\ v_4 \end{bmatrix} \in \mathcal{R}^4 : v_1 + v_2 + v_4 = 0 \right\}$ 1. Check that all vectors in \mathscr{B} belong to V. 2. \mathscr{B} is L.I. (you check it). 3. dim. V = 3 (4 variables, 1 nonzero equation.) \mathscr{B} is a basis of V. Example: Is \mathscr{B} a basis of $W = \text{Span } \mathscr{S}$? $\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix} \right\} \quad \mathcal{S} = \left\{ \begin{bmatrix} 1\\1\\1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\3\\1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1\\-1 \end{bmatrix} \right\}$ Let $B = \begin{bmatrix} 1&1&0\\2&0&1\\0&0&1\\0&1&1 \end{bmatrix}$ and $A = \begin{bmatrix} 1&-1&3&1\\1&3&1&1\\1&1&-1&-1\\2&-1&1&-1 \end{bmatrix}$

1. $\mathcal{B} \subseteq W$ (you check that rank $A = \operatorname{rank} [A \ B]$.) 2. \mathcal{B} is L.I. (you check it). 3. dim. W = 3 (you check that rank A = 3.) $\Rightarrow \mathcal{B}$ is a basis of W.

14

Homework Set for Sections 4.1 and 4.2

Section 4.2: Problems 7, 13, 22, 36, 39-44