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Definition. (Submatrix for cofactor)

Suppose A = [a;;] € Myuxn, is an n X n square matrix.
An (n — 1) x (n — 1) matrix A;; is defined as the submatrix A obtained by

removing the ith row and the jth column of A.

B al]_ « o e alj « o e aln T
ith row
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Definition. (Determinants and Cofactors)

Suppose A = [a;;] € Myuxn, is an n X n square matrix.
The determinant of A, denoted by det A or |A|, is defined as det A = ay; for

n =1 and

det A = aiq - det All — a2 - det A12 + -+ (—1)1+”a1ndet Aln

————
[

a for n > 1. The (i, j)-cofactor c;; of A is defined as (—1)"*/det A;;.
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Question

Consider two n X n matrices A and B. Is
det (AB) =det A-det B

always true?
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Theorem 3.3 (a)

Let A be an n x n matrix. If B is a matrix obtained by interchanging two rows
of A, then det B = — det A.

Proof 1f B is obtained by interchanging row r and row s =r + 1 of 4,
=>a,=b; and 4,=B; V.

= (-1)"a, det 4, + (-1) a,det 4, + - + (-1)"a, det 4,,
= (-1)"'b, det By + (-1)" b,det By, + -+ + (-1)""b  det B,,
= (-1)"by,det By, - (-1 bydet B, - -+ - (-1)™7b, det B,
= det 4 = - det B.

If B 1s obtained by interchanging row » and row s >r + 1 of 4,
= B may be obtained from 4 by making adjacent row interchanges:
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adjacent row
interchanges

= det B=(-1)""(-1"" - det A = (-1)**"! - det 4 = - det 4
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Theorem 3.3 (b)

Let A be an n x n matrix. If B is a matrix obtained by multiplying each entry
of some row of A by a scalar k, then det B = k det A.

Proof (b) If B 1s obtained by multiplying row » of 4 by £,
= det B
=(-1)"'b, et B, + (-1)"b,,det B, + --- + (-1)""b,det B,
= (-1Y"Y%a, det A, + (-1)"ka,det A, + -+ + (-1)"ka, det A,
=k - det 4.
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Theorem 3.3 (c)

Let A be an n x n matrix. If B is a matrix obtained by adding a multiple of
some row of A to a different row, then det B = det A.

Proof 1f C € M has two identical rows, then by (b) det C = - det C,
since C = C with the two 1dentical rows interchanged.
= det C = 0.

If B 1s obtained by adding & times row s of 4 to row 7 (= s),
= detB =(-1)"'b. det B, + --- + (-1)"™"h_ det B,
= (-1 @, thay)det A,y + -+ (-1)"(a, +ha, )det 4,
— (1Y g, det 4,y + - + (-1)"a,, det 4,
+k- (D) agdetd,, + o+ (1) ag, det 4,,]
=det 4 + k- det C, where rows » and s of C are i1dentical.
=detB =detA+k-0=det 4
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Theorem 3.3

Let A be an n X n matrix.

(a) If B is a matrix obtained by interchanging two rows of A, then det B =
—det A.

(b) If B is a matrix obtained by multiplying each entry of some row of A by a
scalar k£, then det B = k det A.

(c) If B is a matrix obtained by adding a multiple of some row of A to a different
row, then det B = det A.

(d) For any n x n elementary matrix F, we have det EA = (det F)(det A).

Proof (d) If E€ M, 1s an elementary matrix obtained by interchanging
two rows of / , then det £ =-det /[ =-1, and by (a) det £4 =
- det 4 = (det E)(det A). For the other two types of elementary

matrices, the proofs are similar.
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With the steps 1-4 of the Gaussian elimination algorithm, every A € R™*"™ may
be transformed into a row echelon form by using elementary row operations
other than scaling operations.

Matrices in the row echelon form are upper triangular.

If an n x n matrix A is transformed into an upper triangular matrix U by
elementary row operations other than scaling operations, then

det A = (—1)TU11U22 cc o Upn,

where r is the number of row interchanges performed.

Proof E, --- E,EA=U= det(£,) --- det(£,)det(E,)det(4) = det U.
Since det(£, ) = =1, we have (-1)'det 4 = det U.
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(-1)*det U =

= det 4
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Using Gaussian elimination to evaluate determinants 1s much faster
than using cofactor expansion, especially for large matrices.

For any A € M,,«», A is not invertible if and only if det A = 0.

Proof rank A <n < its row echelon form has the zero bottom row.
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Theorem 3.4 (a)(b)

Let A and B be square matrices of the same size. The following statements are
true.

(a) A is invertible if and only if det A # 0.

(b) det AB = (det A)(det B).

Proof
b) If 4 is invertible, then 3 elementary matrices E|, E,, - -+, E,, such
that A=F, --- E, E,.
= (det A)(det B) = (det £, ) --- (det £,) (det E,)(det B)
=(detE,) --- (det E,)(det E\B) = ---
=det(E, --- E,E,B) = det AB.
If 4 is not invertible, then 3 an invertible P such that P4 = R, the
reduced row echelon form of 4.
=> R, and thus RB, have the zero bottom rows.
=> (det P)(det AB) =det P(AB) =det RB=0 = det AB =0,
@

but (det A)(det B) =0 - (det B) = 0.
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Theorem 3.4 (c)
Let A be a square matrix. Then det AT = det A.

Proof
(c) If 4 1s invertible, then 3 elementary matrices E,, E,, ---, E,, such
that A=FE, --- E,E,,and A" = E,E,"--- E,".
= det A" = det(E,"E,"--- E.") = (det E,")(det E,") --- (det E,")
= (det £,)(det E,) --- (det £))
= (det £)) --- (det E,)(det E,)
=det (£, --- E,E,) = det 4.
If A4 is not invertible, then 4" is not invertible, otherwise (4”)" = 4

would be invertible.
= det A7 =0 = det 4.

te: det ' = det E,
© y
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Theorem 3.4 (d)

If A is an intertible matrix. Then det A~1 =

1
det A"

Proof
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Theorem 3.4

Let A and B be square matrices of the same size. The following statements are
true.

(a) A is invertible if and only if det A # 0.

(b) det AB = (det A)(det B).
(c) det AT = det A.
(d)

.. . 1 1
If A is invertible, then det A~ = ——.
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Example:

1 -1 2 1 -1 2 1 -1 2 1 -1 2
—1 O ¢l —» |0 =1 ed2]l— 10 =1 42| =10 =1 &+2
2 Py 2 ] 7 0 3 3 0 0 3¢+9

. The matrix 1s invertible 1f and only if ¢ = -3.
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Example: —— A Blm [I, O1[A B
O R | = o S o S

m n

BN ) At B
= det M = det [0 C] - det [0 ]n] = (det C)(det A).

Example:

0 0
A=[(1) 8} B=[0 1] det(A + B) # det A + det B




-

Homework Set for Section 3.2

Section 3.2: Problems 7, 13, 22, 36, 39-44




