Definition. (Submatrix for cofactor)

Suppose $A = [a_{ij}] \in \mathcal{M}_{n \times n}$ is an $n \times n$ square matrix.

An $(n-1) \times (n-1)$ matrix A_{ij} is defined as the submatrix A obtained by removing the *i*th row and the *j*th column of A.

Definition. (Determinants and Cofactors)

Suppose $A = [a_{ij}] \in \mathcal{M}_{n \times n}$ is an $n \times n$ square matrix.

The **determinant** of A, denoted by $\det A$ or |A|, is defined as $\det A = a_{11}$ for n = 1 and

$$\det A = a_{11} \cdot \det A_{11} - a_{12} \cdot \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$

for n > 1. The (i, j)-cofactor c_{ij} of A is defined as $(-1)^{i+j} \det A_{ij}$.

Question

Consider two $n \times n$ matrices A and B. Is

$$\det(AB) = \det A \cdot \det B$$

always true?

Theorem 3.3 (a)

Let A be an $n \times n$ matrix. If B is a matrix obtained by interchanging two rows of A, then det $B = -\det A$.

Proof If B is obtained by interchanging row r and row s = r + 1 of A,

$$\Rightarrow a_{rj} = b_{sj}$$
 and $A_{rj} = B_{sj} \ \forall j$.

$$\Rightarrow (-1)^{r+1} a_{r1} \det A_{r1} + (-1)^{r+2} a_{r2} \det A_{r2} + \dots + (-1)^{r+n} a_{rn} \det A_{rn}$$

$$= (-1)^{r+1} b_{s1} \det B_{s1} + (-1)^{r+2} b_{s2} \det B_{s2} + \dots + (-1)^{r+n} b_{sn} \det B_{sn}$$

$$= -(-1)^{s+1} b_{s1} \det B_{s1} - (-1)^{s+2} b_{s2} \det B_{s2} - \dots - (-1)^{s+n} b_{sn} \det B_{sn}$$

 \Rightarrow det A = - det B.

If B is obtained by interchanging row r and row s > r + 1 of A,

 \Rightarrow B may be obtained from A by making adjacent row interchanges:

$$\begin{bmatrix} ---a'_{1}--- \\ \vdots \\ ---a'_{r-1}--- \\ ---a'_{r}--- \\ \vdots \\ ---a'_{r+1}--- \\ \vdots \\ ---a'_{s-1}--- \\ ---a'_{s-1}---- \\ ---a'_{s-1}--- \\ ---a'_{s-1}--- \\ ---a'_{s-1}--- \\ ---a'_{s-1$$

$$S - r$$
adjacent rown terchanges

$$s - r - 1$$
 adjacent row interchanges

$$\begin{bmatrix} ---a'_{1} - --- \\ \vdots \\ ---a'_{r-1} - --- \\ ---a'_{s} - --- \\ \vdots \\ ---a'_{s-1} - --- \\ ---a'_{r} - --- \\ \vdots \\ ---a'_{n} - --- \end{bmatrix}$$

$$\Rightarrow \det B = (-1)^{s-r}(-1)^{s-r-1} \cdot \det A = (-1)^{2(s-r)-1} \cdot \det A = -\det A$$

Theorem 3.3 (b)

Let A be an $n \times n$ matrix. If B is a matrix obtained by multiplying each entry of some row of A by a scalar k, then $\det B = k \det A$.

Proof (b) If B is obtained by multiplying row r of A by k,

 \Rightarrow det B

$$= (-1)^{r+1} b_{r1} \det B_{r1} + (-1)^{r+2} b_{r2} \det B_{r2} + \dots + (-1)^{r+n} b_{rn} \det B_{rn}$$

$$= (-1)^{r+1} k a_{r1} \det A_{r1} + (-1)^{r+2} k a_{r2} \det A_{r2} + \dots + (-1)^{r+n} k a_{rn} \det A_{rn}$$

 $= k \cdot \det A$.

Theorem 3.3 (c)

Let A be an $n \times n$ matrix. If B is a matrix obtained by adding a multiple of some row of A to a different row, then det $B = \det A$.

Proof If $C \in \mathcal{M}_{n \times n}$ has two identical rows, then by (b) det $C = -\det C$, since C = C with the two identical rows interchanged.

$$\Rightarrow$$
 det $C = 0$.

If B is obtained by adding k times row s of A to row $r \neq s$,

$$\Rightarrow \det B = (-1)^{r+1} b_{r1} \det B_{r1} + \dots + (-1)^{r+n} b_{rn} \det B_{rn}$$

$$= (-1)^{r+1} (a_{r1} + ka_{s1}) \det A_{r1} + \dots + (-1)^{r+n} (a_{rn} + ka_{sn}) \det A_{rn}$$

$$= (-1)^{r+1} a_{r1} \det A_{r1} + \dots + (-1)^{r+n} a_{rn} \det A_{rn}$$

$$+ k \cdot [(-1)^{r+1} a_{s1} \det A_{r1} + \dots + (-1)^{r+n} a_{sn} \det A_{rn}]$$

= $\det A + k \cdot \det C$, where rows r and s of C are identical.

$$\Rightarrow$$
 det $B = \det A + k \cdot 0 = \det A$

Theorem 3.3

Let A be an $n \times n$ matrix.

- (a) If B is a matrix obtained by interchanging two rows of A, then $\det B = -\det A$.
- (b) If B is a matrix obtained by multiplying each entry of some row of A by a scalar k, then $\det B = k \det A$.
- (c) If B is a matrix obtained by adding a multiple of some row of A to a different row, then $\det B = \det A$.
- (d) For any $n \times n$ elementary matrix E, we have $\det EA = (\det E)(\det A)$.

Proof (d) If $E \in \mathcal{M}_{n \times n}$ is an elementary matrix obtained by interchanging two rows of I_n , then det $E = -\det I_n = -1$, and by (a) det $EA = -\det A = (\det E)(\det A)$. For the other two types of elementary matrices, the proofs are similar.

With the steps 1-4 of the Gaussian elimination algorithm, every $A \in \mathcal{R}^{n \times n}$ may be transformed into a row echelon form by using elementary row operations other than scaling operations.

Matrices in the row echelon form are upper triangular.

If an $n \times n$ matrix A is transformed into an upper triangular matrix U by elementary row operations other than scaling operations, then

$$\det A = (-1)^r u_{11} u_{22} \cdots u_{nn},$$

where r is the number of row interchanges performed.

Proof
$$E_k \cdots E_2 E_1 A = U \Rightarrow \det(E_k) \cdots \det(E_2) \det(E_1) \det(A) = \det U$$
.
Since $\det(E_k) = \pm 1$, we have $(-1)^r \det A = \det U$.

Example:

$$A = \begin{bmatrix} 0 & 1 & 3 & -3 \\ 0 & 0 & 4 & -2 \\ -2 & 0 & 4 & -7 \\ 4 & -4 & 4 & 15 \end{bmatrix} \qquad \begin{bmatrix} -2 & 0 & 4 & -7 \\ 0 & 0 & 4 & -2 \\ 0 & 1 & 3 & -3 \\ 4 & -4 & 4 & 15 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 0 & 4 & -7 \\ 0 & 0 & 4 & -2 \\ 0 & 1 & 3 & -3 \\ 0 & -4 & 12 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 4 & -7 \\ 0 & 1 & 3 & -3 \\ 0 & 0 & 4 & -2 \\ 0 & -4 & 12 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 0 & 4 & -7 \\ 0 & 1 & 3 & -3 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 24 & -11 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 4 & -7 \\ 0 & 1 & 3 & -3 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = U$$

$$\Rightarrow$$
 det $A = (-1)^2$ det $U = (-1)^2 \cdot (-2) \cdot 1 \cdot 4 \cdot 1 = -8$.

Using Gaussian elimination to evaluate determinants is much faster than using cofactor expansion, especially for large matrices.

For any $A \in \mathcal{M}_{n \times n}$, A is not invertible if and only if det A = 0.

Proof rank $A \le n \Leftrightarrow \text{its row echelon form has the zero bottom row.}$

Theorem 3.4 (a)(b)

Let A and B be square matrices of the same size. The following statements are true.

- (a) A is invertible if and only if $\det A \neq 0$.
- (b) $\det AB = (\det A)(\det B)$.

Proof

- b) If A is invertible, then \exists elementary matrices E_1, E_2, \dots, E_k , such that $A = E_k \dots E_2 E_1$.
 - \Rightarrow (det A)(det B) = (det E_k) ··· (det E_2) (det E_1)(det B)
 - $= (\det E_{k}) \cdots (\det E_{2})(\det E_{1}B) = \cdots$
 - $= \det(E_k \cdots E_2 E_1 B) = \det AB.$

If A is not invertible, then \exists an invertible P such that PA = R, the reduced row echelon form of A.

- \Rightarrow R, and thus RB, have the zero bottom rows.
- \Rightarrow (det P)(det AB) = det P(AB) = det RB = 0 \Rightarrow det AB = 0, but (det A)(det B) = 0 \cdot (det B) = 0.

Theorem 3.4 (c)

Let A be a square matrix. Then $\det A^T = \det A$.

Proof

(c) If A is invertible, then \exists elementary matrices E_1, E_2, \dots, E_k , such that $A = E_k \dots E_2 E_1$, and $A^T = E_1^T E_2^T \dots E_k^T$.

$$\Rightarrow$$
 det $A^T = \det(E_1^T E_2^T \cdots E_k^T) = (\det E_1^T)(\det E_2^T) \cdots (\det E_k^T)$

$$= (\det E_1)(\det E_2) \cdots (\det E_k)$$

$$= (\det E_k) \cdots (\det E_2)(\det E_1)$$

$$= \det (E_k \cdots E_2 E_1) = \det A.$$

If A is not invertible, then A^T is not invertible, otherwise $(A^T)^T = A$ would be invertible.

$$\Rightarrow$$
 det $A^T = 0 = \det A$.

Theorem 3.4 (d)

If A is an intertible matrix. Then $\det A^{-1} = \frac{1}{\det A}$.

Proof

Theorem 3.4

Let A and B be square matrices of the same size. The following statements are true.

- (a) A is invertible if and only if $\det A \neq 0$.
- (b) $\det AB = (\det A)(\det B)$.
- (c) $\det A^T = \det A$.
- (d) If A is invertible, then $\det A^{-1} = \frac{1}{\det A}$.

Example:

$$\begin{bmatrix} 1 & -1 & 2 \\ -1 & 0 & c \\ 2 & 1 & 7 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & c+2 \\ 2 & 1 & 7 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & c+2 \\ 0 & 3 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & c+2 \\ 0 & 0 & 3c+9 \end{bmatrix}$$

 \therefore The matrix is invertible if and only if $c \neq -3$.

$$M = \begin{bmatrix} A & B \\ O & C \end{bmatrix}_n^m = \begin{bmatrix} I_m & O' \\ O & C \end{bmatrix} \begin{bmatrix} A & B \\ O & I_n \end{bmatrix}$$

$$\Rightarrow \det M = \det \begin{bmatrix} I_m & O' \\ O & C \end{bmatrix} \cdot \det \begin{bmatrix} A & B \\ O & I_n \end{bmatrix} = (\det C)(\det A).$$

Example:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \det(A + B) \neq \det A + \det B$$

Homework Set for Section 3.2

Section 3.2: Problems 7, 13, 22, 36, 39-44