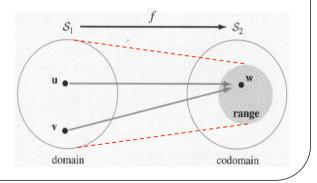
2.8 Composition and Invertibility of Linear Transformations

The standard matrix of a linear transformation *T* can be used to find a generating set for the range of *T*. Example: $T : \mathcal{R}^3 \to \mathcal{R}^2$,

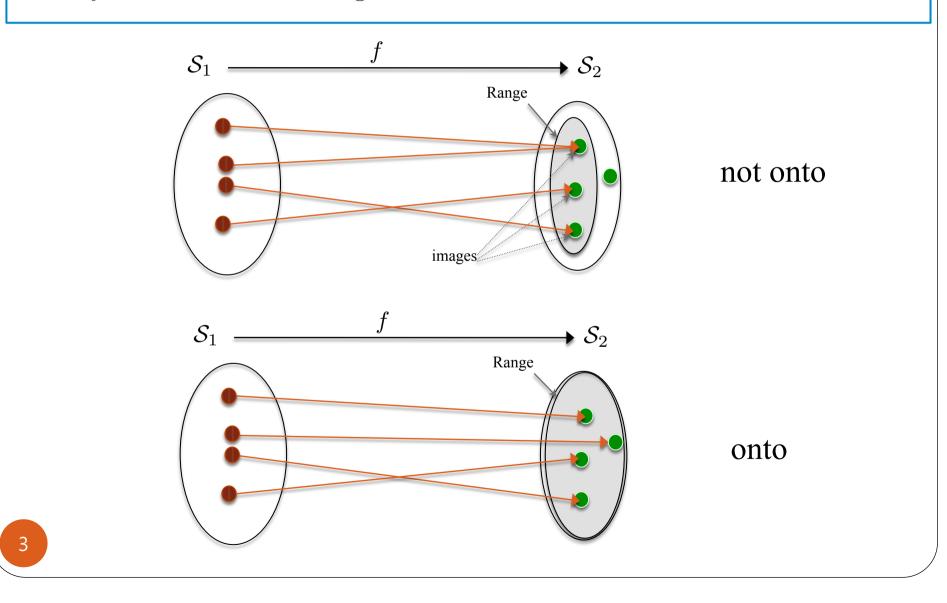
$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}3x_1 - 4x_2\\2x_1 + x_3\end{bmatrix}$$
$$A = \begin{bmatrix}T(\mathbf{e}_1) & T(\mathbf{e}_2) & T(\mathbf{e}_3)\end{bmatrix} = \begin{bmatrix}3 & -4 & 0\\2 & 0 & 1\end{bmatrix}$$
Now, $\mathbf{w} \in \operatorname{range}(T) \Leftrightarrow \mathbf{w} = T(\mathbf{v})$ for some $\mathbf{v} \in \mathcal{R}^2$.



Property

The range of a linear transformation equals the span of the columns of its standard matrix.

A function $f : \mathcal{R}^n \to \mathcal{R}^m$ is said to be **onto** if its range is all of \mathcal{R}^m ; that is, if every vector in \mathcal{R}^m is an image.



A function $f : \mathcal{R}^n \to \mathcal{R}^m$ is said to be **onto** if its range is all of \mathcal{R}^m ; that is, if every vector in \mathcal{R}^m is an image.

(Review) Theorem 1.6

The following statements about an $m \times n$ matrix A are equivalent:

- (a) The span of the columns of A is \mathcal{R}^m .
- (c) the rank of A is m.

Theorem 2.10

Let $T : \mathcal{R}^n \to \mathcal{R}^m$ be a linear transformation with standard matrix A. The following conditions are equivalent:

(a) T is onto; that is, the range of T is \mathcal{R}^m .

(b) The columns of A form a generating set for \mathcal{R}^m .

(c) $\operatorname{rank}(A) = m$.

Example: Is *T* onto?

 $\Rightarrow A =$

 $R = \Big|$

$$T: \mathcal{R}^3 \to \mathcal{R}^3 \text{ with } T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] \right) = \left[\begin{array}{c} x_1 + 2x_2 + 4x_3 \\ x_1 + 3x_2 + 6x_3 \\ 2x_1 + 5x_2 + 10x_3 \end{array} \right]$$

with the reduced row echelon form

The system of linear equations $A\mathbf{x} = \mathbf{b}$ may be written as $T_A(\mathbf{x}) = \mathbf{b}$. $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is in the range of T_A . T_A is not onto if and only if **B** b such that $A\mathbf{x} = \mathbf{b}$ is inconsistent.

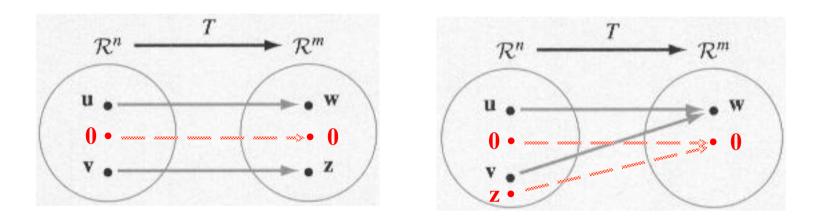
A function $f : \mathcal{R}^n \to \mathcal{R}^m$ is said to be **onto** if its range is all of \mathcal{R}^m ; that is, if every vector in \mathcal{R}^m is an image.

(Review) Theorem 1.6

The following statements about an $m \times n$ matrix A are equivalent: (a) The span of the columns of A is \mathcal{R}^m .

(c) the rank of A is m.

A function $f : \mathcal{R}^n \to \mathcal{R}^m$ is said to be **one-to-one** if every pair of distinct vectors in \mathcal{R}^n has distinct images. That is, if **u** and **v** are distinct vectors in \mathcal{R}^n , then $f(\mathbf{u})$ and $f(\mathbf{v})$ are distinct vectors in \mathcal{R}^m .

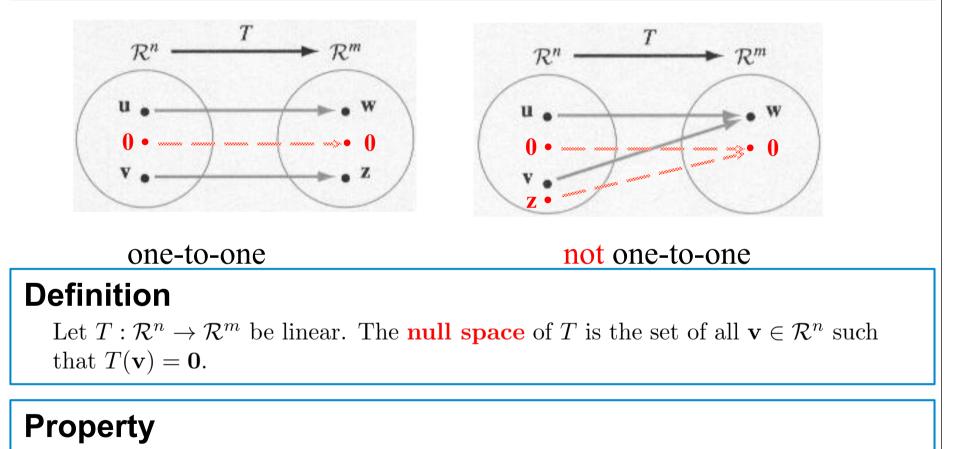


one-to-one

not one-to-one

An equivalent condition for a function f to be one-to-one is that $f(\mathbf{u}) = f(\mathbf{v})$ implies $\mathbf{u} = \mathbf{v}$.

A function $f : \mathcal{R}^n \to \mathcal{R}^m$ is said to be **one-to-one** if every pair of distinct vectors in \mathcal{R}^n has distinct images. That is, if **u** and **v** are distinct vectors in \mathcal{R}^n , then $f(\mathbf{u})$ and $f(\mathbf{v})$ are distinct vectors in \mathcal{R}^m .



A linear transformation is one-to-one if and only if its null space contains only

8 0.

Example:

$$T: \mathcal{R}^3 \to \mathcal{R}^2 \text{ with } T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 - x_2 + 2x_3 \\ -x_1 + x_2 - 3x_3 \end{bmatrix}$$

Find a generating set for the null space of *T*. the null space of *T* is the set of solutions to $A\mathbf{x} = \mathbf{0}$, where

is the standard matrix of T, and has the reduced row echelon form

$$R =$$

A =

The reduced row echelon form corresponds to the linear equations

$$\begin{array}{rcl} x_1 - x_2 & = 0 \\ x_3 & = 0 \end{array}$$

so a generating set for the null space of T is $\{ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T \}$

Theorem 2.11

Let $T : \mathcal{R}^n \to \mathcal{R}^m$ be a linear transformation with standard matrix A. The following conditions are equivalent:

(a) T is one-to-one.

(b) The null space of T consists only of the zero vector.

(c) The columns of A are linearly independent.

(d) $\operatorname{rank}(A) = n$.

(Review) Theorem 1.8

The following statements about an $m \times n$ matrix A are equivalent: (a) The columns of A are linearly independent. (d) rank(A) = n.

Example:

$$T: \mathcal{R}^3 \to \mathcal{R}^3 \text{ with } T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 + 2x_2 + 4x_3 \\ x_1 + 3x_2 + 6x_3 \\ 2x_1 + 5x_2 + 10x_3 \end{bmatrix} = A\mathbf{x}$$

The standard matrix A has rank 2 (nullity 1), so T is not one-to-one.

If T_A is one-to-one and the solution of $A\mathbf{x} = \mathbf{b}$ exists, then the solution is unique. Conversely, if there is at most one solution to $A\mathbf{x} = \mathbf{b}$ for every \mathbf{b} , then T_A is one-to-one.

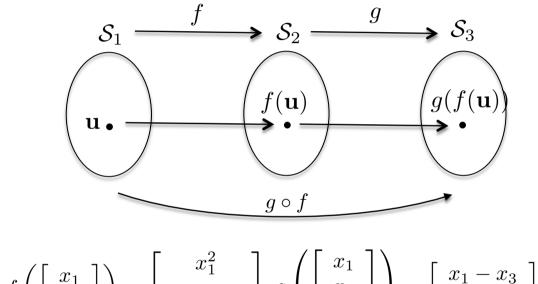
Example:

11

$$A = \begin{bmatrix} 0 & 0 & 1 & 3 & 3 \\ 2 & 3 & 1 & 5 & 2 \\ 4 & 6 & 1 & 6 & 2 \\ 4 & 6 & 1 & 7 & 1 \end{bmatrix} \xrightarrow{\text{row reduced}}_{\text{echelon form}} R = \begin{bmatrix} 1 & 1.5 & 0 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

rank A = 3 and nullity A = 2. $\Rightarrow T_A$ is not onto and not one-to-one. $\Rightarrow A\mathbf{x} = \mathbf{b}$ is inconsistent for \mathbf{b} not in the range of T_A , and the solutions of $A\mathbf{x} = \mathbf{b}$ is never unique.

Given two functions $f: S_1 \to S_2$ and $g: S_2 \to S_3$, the **composite** $g \circ f: S_1 \to S_3$ is the function defined by $(g \circ f)(\mathbf{u}) = g(f(\mathbf{u}))$ for all \mathbf{u} in S_1 . Sometimes the " \circ " is dropped for brevity.



Example:
$$f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_1 x_2 \\ x_1 + x_2 \end{bmatrix} g\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_3 \\ 3x_2 \end{bmatrix}$$

$$\Rightarrow \qquad (g \circ f)\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^2 - (x_1 + x_2) \\ 3x_1 x_2 \end{bmatrix}$$

Given $A \in \mathcal{R}^{m \times n}$ and $B \in \mathcal{R}^{p \times m}$, we have $T_{BA}(\mathbf{v}) = (BA)\mathbf{v} = B(A\mathbf{v})$ = $B(T_A(\mathbf{v})) = T_B(T_A(\mathbf{v}))$ for all $\mathbf{v} \in \mathcal{R}^n$. Thus $T_{BA} = T_B \circ T_A = T_BT_A$.

Theorem 2.12

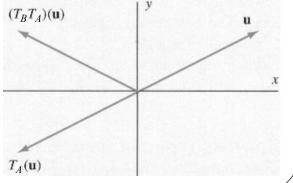
If $T : \mathcal{R}^n \to \mathcal{R}^m$ and $U : \mathcal{R}^m \to \mathcal{R}^p$ are linear transformations with standard matrices A and B, respectively, then the composition $UT : \mathcal{R}^n \to \mathcal{R}^p$ is also linear, and its standard matrix is BA.

Example:
$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow T_A$$
: rotation by 180° in \mathbb{R}^2 .
 $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow T_B$: reflection about the *x*-axis in \mathbb{R}^2 .

$$T_{BA}\left(\left[\begin{array}{c}u_1\\u_2\end{array}\right]\right) = (BA)\left[\begin{array}{c}u_1\\u_2\end{array}\right] = \left[\begin{array}{c}-1&0\\0&1\end{array}\right]\left[\begin{array}{c}u_1\\u_2\end{array}\right] = \left[\begin{array}{c}-u_1\\u_2\end{array}\right]$$

$$\Rightarrow T_{BA} : \text{reflection about the } y\text{-axis in } \mathbb{R}^2$$

= rotation by 180° followed by
reflection about the x-axis in \mathbb{R}^2 .



A function $f: S_1 \to S_2$ is **invertible** if there exists a function $g: S_2 \to S_1$ such that $(g \circ f)(\mathbf{v}) = g(f(\mathbf{v})) = \mathbf{v}$ for all \mathbf{v} in S_1 and $(f \circ g)(\mathbf{u}) = f(g(\mathbf{u})) = \mathbf{u}$ for all \mathbf{u} in S_2 . If f is invertible, then the function g is unique, called the **inverse** of f and denoted as f^{-1} .

If $A \in \mathcal{R}^{n \times n}$ is invertible, then for all $\mathbf{v} \in \mathbb{R}^n$ we have $T_A(T_{A^{-1}}(\mathbf{v})) = (T_A T_{A^{-1}})(\mathbf{v}) = T_{AA^{-1}}(\mathbf{v}) = T_{I_n}(\mathbf{v}) = I_n \mathbf{v} = \mathbf{v}$, and $T_{A^{-1}}(T_A(\mathbf{v})) = \mathbf{v}$. Thus $T_A^{-1} = T_{A^{-1}}$.

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$$
$$T_A \left(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right) = \begin{bmatrix} v_1 + 2v_2 \\ 3v_1 + 5v_2 \end{bmatrix}$$
$$T_A^{-1} \left(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right) = T_{A^{-1}} \left(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right) = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -5v_1 + 2v_2 \\ 3v_1 - v_2 \end{bmatrix}$$

14

Theorem 2.13

Let $T: \mathcal{R}^n \to \mathcal{R}^n$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is invertible, in which case $T^{-1} = T_{A^{-1}}$. Thus T^{-1} is linear, and its standard matrix is A^{-1} .

Property of <i>T</i>	The number of solutions of <i>A</i> x=b	Property of the columns of A	Property of the rank of <i>A</i>	Theorem
<i>T</i> is onto	$A\mathbf{x} = \mathbf{b}$ has at least one solution for every b in \mathcal{R}^m .	The columns of A are a generating set for \mathcal{R}^{m} .	$\operatorname{rank} A = m$	2.10
<i>T</i> is one-to-one	$A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b} in \mathcal{R}^m .	The columns of <i>A</i> are linearly independent.	$\operatorname{rank} A = n$	2.11
<i>T</i> is invertible	$A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in $\mathbf{\mathcal{R}}^m$	The columns of A are a linearly independent generating set for \mathcal{R}^m .	$\operatorname{rank} A = m = n$	2.13

Homework Set for Section 2.8

Section 2.8: Problems 1, 5, 13, 17, 19, 25, 29, 33, 37