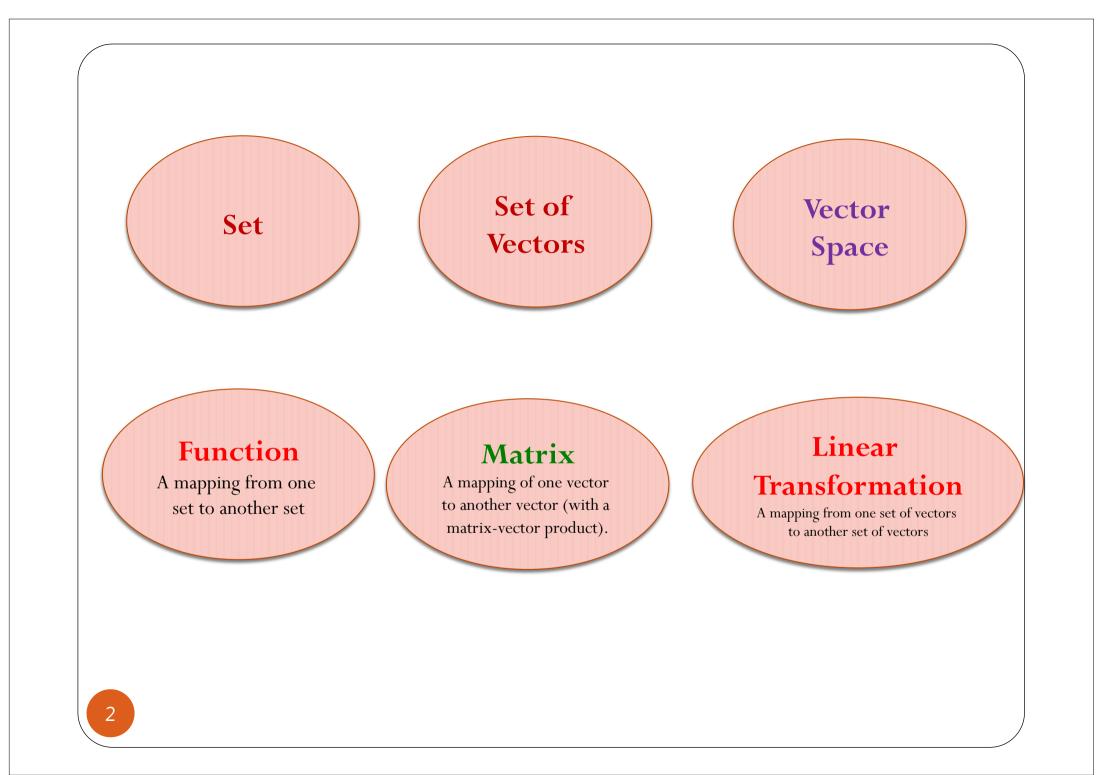


An $m \ge n$ matrix can be viewed as a function that maps an *n*-component vector x to an *m*-component vector y.

This type of **functions** is associated with the concept of **linear transformations**, one of the two major concepts in the course of linear algebra.



2.7 Linear Transformations and Matrices

Definitions (Function)

Let S_1 and S_2 be two sets. A function f from S_1 to S_2 , written

 $f: \mathcal{S}_1 \to \mathcal{S}_2,$

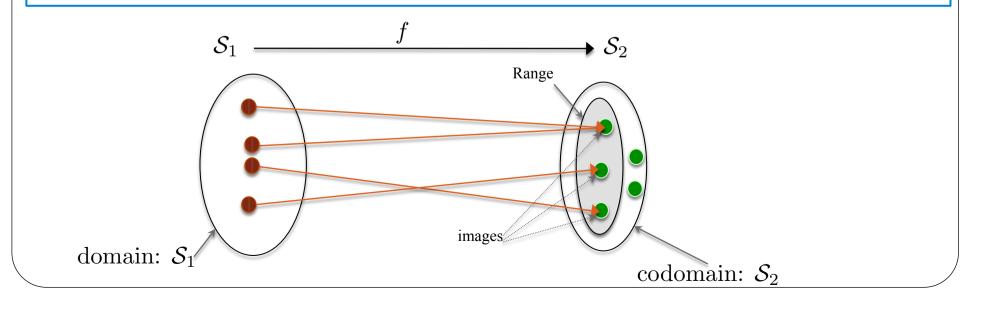
is a mapping that assigns an element in S_2 to **each** element in S_1 .

For any element $a \in S_1$, there exists a unique element $b \in S_2$ such that f(a) = b. This is called the **image** of a.

The set S_1 is called the **domain** of the function f, and the set S_2 is called the **codomain** of f.

The vector $f(\mathbf{v})$ is called the **image** of \mathbf{v} (under f).

The **range** of f is the subset of S_2 that contains **all** images: $\{f(a) : a \in S_1\}$



Definitions (Function)

Let S_1 and S_2 be two sets. A function f from S_1 to S_2 , written

 $f: \mathcal{S}_1 \to \mathcal{S}_2,$

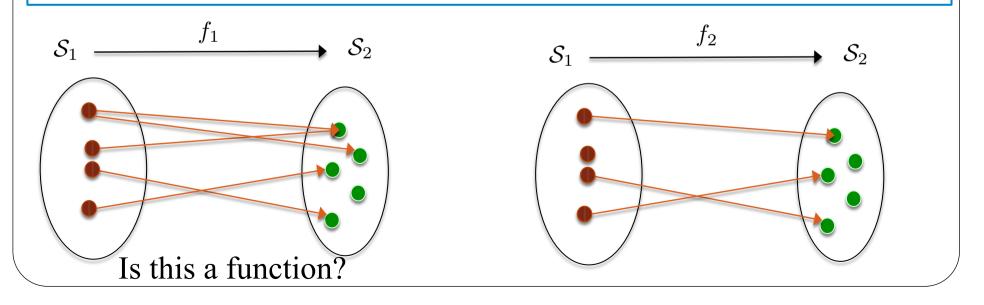
is a mapping that assigns an element in \mathcal{S}_2 to **each** element in \mathcal{S}_1 .

For any element $a \in S_1$, there exists a unique element $b \in S_2$ such that f(a) = b. This is called the **image** of a.

The set S_1 is called the **domain** of the function f, and the set S_2 is called the **codomain** of f.

The vector $f(\mathbf{v})$ is called the **image** of \mathbf{v} (under f).

The **range** of f is the subset of S_2 that contains **all** images: $\{f(a) : a \in S_1\}$



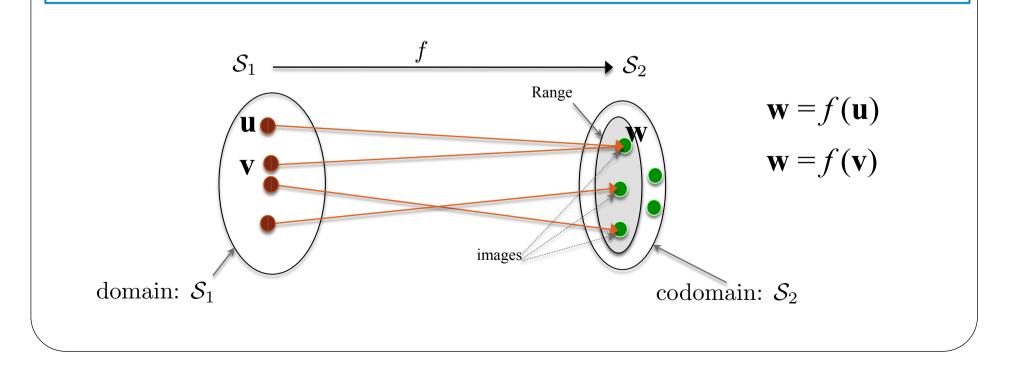
Definitions (Functions on subsets of \Re^n)

Let S_1 and S_2 be subsets of \mathcal{R}^n and \mathcal{R}^m , respectively. A **function** f from S_1 to S_2 , written $f : S_1 \to S_2$, is a rule that assigns to each vector \mathbf{v} in S_1 a unique vector $f(\mathbf{v})$ in S_2 .

The vector $f(\mathbf{v})$ is called the **image** of \mathbf{v} (under f).

The set S_1 is called the **domain** of a function f, and the set S_2 is called the **codomain** of f.

The **range** of f is defined to be the set of images $f(\mathbf{v})$ for all \mathbf{v} in S_1 .



$$f: \mathcal{R}^3 \to \mathcal{R}^2 \text{ with } f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 + x_3 \\ x_1^2 \end{bmatrix}$$

$$f\left(\left[\begin{array}{c}0\\1\\1\end{array}\right]\right) = f\left(\left[\begin{array}{c}0\\3\\-1\end{array}\right]\right) = f\left(\left[\begin{array}{c}0\\-1\end{array}\right]\right) = f\left(\left[\begin{array}{c}0\\-1\end{array}\right)$$

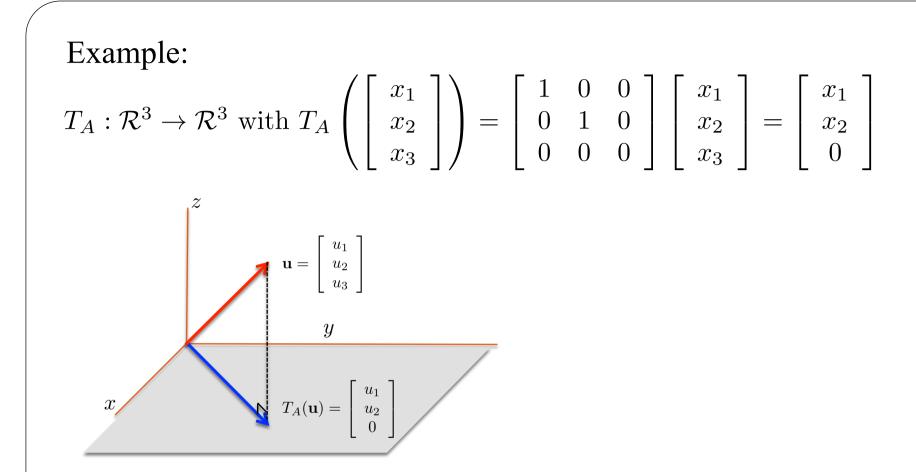
$$f\left(\left[\begin{array}{c}\\\\\\-1\end{array}\right]\right) = \left[\begin{array}{c}0\\\\-1\end{array}\right]$$

$$T_A : \mathcal{R}^2 \to \mathcal{R}^3$$
 with $T_A(\mathbf{x}) = A\mathbf{x}$ where $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 1 & -1 \end{bmatrix}$

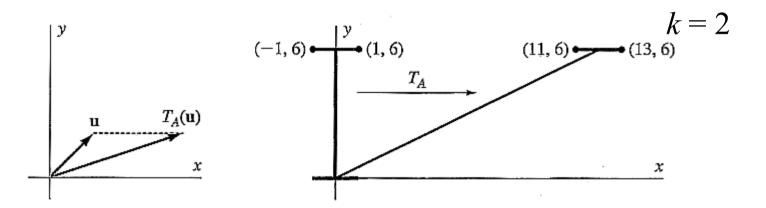
$$\Rightarrow T_A\left(\left[\begin{array}{c} x_1\\ x_2\end{array}\right]\right) = \left[\begin{array}{cc} 1&0\\2&1\\1&-1\end{array}\right]\left[\begin{array}{c} x_1\\ x_2\end{array}\right] = \left[\begin{array}{c} x_1\\2x_1+x_2\\ x_1-x_2\end{array}\right]$$

Definition

Let A be an $m \times n$ matrix. The function $T_A : \mathcal{R}^n \to \mathcal{R}^m$ defined by $T_A(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathcal{R}^n is called the **matrix transformation induced by** A.



 $T_A(\mathbf{u})$ is the projection of $\mathbf{u} \in \mathcal{R}^3$ on to the *xy*-plane, which is the range of T_A .



$$\mathbf{x} \in \mathcal{R}_n \longrightarrow T_A \longrightarrow \mathbf{y} = T_A(\mathbf{x}) \\ = A\mathbf{x} \in \mathcal{R}^m$$

Question: Is any **matrix transformation** (induced by an $m \times n$ matrix) a function (from \mathcal{R}^n to \mathcal{R}^m)?

Question: Can any function from \mathcal{R}^n to \mathcal{R}^m be written as a matrix transformation induced by an $m \times n$ matrix?

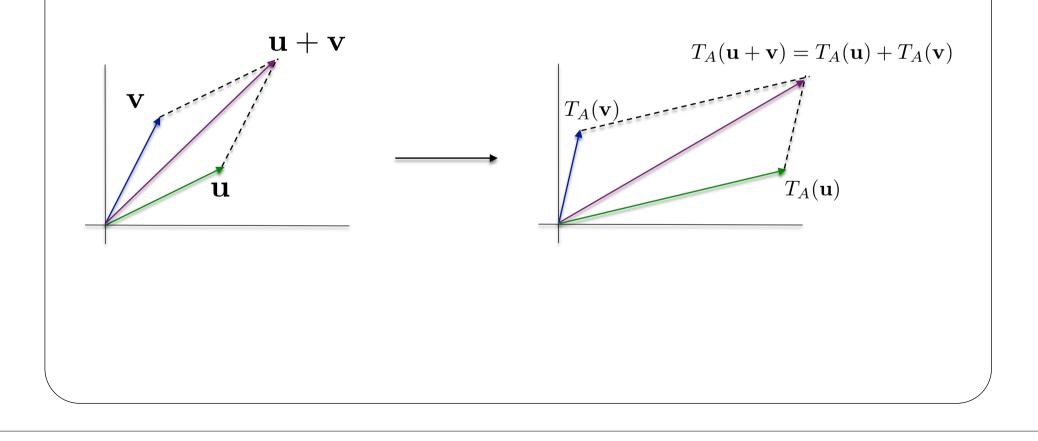
Think: What kind of properties does a matrix transformation, a special case of functions from \mathcal{R}^n to \mathcal{R}^m , possess?

For example, can we express $T_A(\mathbf{u} + \mathbf{v})$ in terms of $T_A(\mathbf{u})$ and $T_A(\mathbf{v})$, for any $\mathbf{u}, \mathbf{v} \in \mathcal{R}^n$?

For any $m \times n$ matrix A and any vectors **u** and **v** in \mathcal{R}^n , the following statements are true:

(a)
$$T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v})$$

(b)
$$T_A(c\mathbf{u}) = cT_A(\mathbf{u})$$
 for every scalar c.



For any $m \times n$ matrix A and any vectors **u** and **v** in \mathcal{R}^n , the following statements are true:

- (a) $T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v})$
- (b) $T_A(c\mathbf{u}) = cT_A(\mathbf{u})$ for every scalar c.

Proof

Definition

A function T from \mathcal{R}^n to \mathcal{R}^m , written $T : \mathcal{R}^n \to \mathcal{R}^m$, is called a **linear trans**formation (or simply **linear**) if, for all vectors **u** and **v** in \mathcal{R}^n and all scalars c, both of the following conditions hold:

(i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}).$ (ii) $T(c\mathbf{u}) = cT(\mathbf{u}).$

In the case of (i), we say that T preserves vector addition. In the case of (ii), we say that T preserves scalar multiplication.

From Theorem 2.7, any **matrix transformation** (induced by any matrix *A*) must be a **linear transformation**!

Can you find a function from \mathcal{R}^n to \mathcal{R}^m that satisfies condition (ii) but not condition (i)?

Can you find a function from \mathcal{R}^n to \mathcal{R}^m that satisfies condition (i) but not condition (ii)?

There are functions from \mathcal{R}^n to \mathcal{R}^m satisfying condition (ii) of the definition of linear transformation but not (i). For example,

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{for } \begin{bmatrix} x \\ y \end{bmatrix} \neq \mathbf{0} \\ 0 & \text{otherwise} \end{cases}$$

If a function $T: \mathbb{R}^n \to \mathbb{R}^m$ satisfies condition (i), then for all integers k, l > 0 and $\mathbf{x} \in \mathbb{R}^n, T(k\mathbf{x}) = T(\mathbf{x} + \dots + \mathbf{x}) = T(\mathbf{x}) + \dots + T(\mathbf{x}) = kT(\mathbf{x})$ and $T(\mathbf{x}) = T((1/l)\mathbf{x} + \dots + (1/l)\mathbf{x}) = T((1/l)\mathbf{x}) + \dots + T((1/l)\mathbf{x}) =$ $lT((1/l)\mathbf{x}), \text{ or } (1/l)T(\mathbf{x}) = T((1/l)\mathbf{x}).$ Also, $T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0}),$ so $T(\mathbf{0}) = \mathbf{0}$. And $T(\mathbf{0}) = T(\mathbf{x} + (-1)\mathbf{x}) = T(\mathbf{x}) + T(-\mathbf{x}),$ so $T(-\mathbf{x}) = -T(\mathbf{x}).$ Therefore $T(r\mathbf{x}) = rT(\mathbf{x})$ for all rational number r. To further imply $T(c\mathbf{x}) = cT(\mathbf{x})$ for all real number c, "continuity" of the function T must be assumed. Consider the following functions: (1) the identity transformation $I : \mathcal{R}^n \to \mathcal{R}^n$ with $I(\mathbf{x}) = \mathbf{x}, \forall \mathbf{x} \in \mathcal{R}^n$. (2) the zero transformation $T_0 : \mathcal{R}^n \to \mathcal{R}^m$ with $T_0(\mathbf{x}) = \mathbf{0}, \forall \mathbf{x} \in \mathcal{R}^n$.

Question: Is each of them a linear transformation?

Question: Is each of them a matrix transformation?

Think: Can any linear transformation be written as a matrix transformation induced by an *m* x *n* matrix *A*?

For any linear transformation $T : \mathcal{R}^n \to \mathcal{R}^m$, the following statements are true: (a) $T(\mathbf{0}) = \mathbf{0}$. (b) $T(-\mathbf{u}) = -T(\mathbf{u})$ for all vectors \mathbf{u} in \mathcal{R}^n . (c) $T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in \mathcal{R}^n . (d) $T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in \mathcal{R}^n and all scalars a and b.

Proof

For any linear transformation $T : \mathcal{R}^n \to \mathcal{R}^m$, the following statements are true: (a) $T(\mathbf{0}) = \mathbf{0}$. (b) $T(-\mathbf{u}) = -T(\mathbf{u})$ for all vectors \mathbf{u} in \mathcal{R}^n . (c) $T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in \mathcal{R}^n . (d) $T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in \mathcal{R}^n and all scalars a and b.

Corollary:

Let $T : \mathcal{R}^n \to \mathcal{R}^m$ be a linear transformation. If $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are vectors in \mathcal{R}^n and a_1, a_2, \cdots, a_k are scalars, then

 $T(a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_k\mathbf{u}_k) = a_1T(\mathbf{u}_1) + a_2T(\mathbf{u}_2) + \dots + a_kT(\mathbf{u}_k).$

Note: $T : \mathcal{R} \rightarrow \mathcal{R}$ with T(x) = 2x + 3 is not a linear transformation, but is an affine transformation.

Suppose $T: \mathcal{R}^2 \to \mathcal{R}^2$ is a linear transformation such that

$$T\begin{pmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2\\ 3 \end{bmatrix} \text{ and } T\begin{pmatrix} \begin{bmatrix} 1\\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 4\\ -1 \end{bmatrix}$$

(a) $T\begin{pmatrix} \begin{bmatrix} 3\\ 3 \end{bmatrix} \end{pmatrix} =$
(b) Find $T\begin{pmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} \end{pmatrix}$ and $T\begin{pmatrix} \begin{bmatrix} 0\\ 1 \end{bmatrix} \end{pmatrix}$, and then determine $T\begin{pmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} \end{pmatrix}$

$$T: \mathcal{R}^2 \to \mathcal{R}^2 \quad \text{with } T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} 2x_1 - x_2 \\ x_1 \end{bmatrix} \text{ is linear. Why?}$$

(a) $T\left(\mathbf{u} + \mathbf{v}\right) =$

 $=T\left(\mathbf{u}\right)+T(\mathbf{v})$

(b) $T(c\mathbf{u}) =$

 $= cT(\mathbf{u})$

another way of verifying the linearity: show \exists a matrix A such that $T = T_A$, and in this case

$$T_A\left(\left[\begin{array}{c} x_1\\ x_2\end{array}\right]\right) = \left[\begin{array}{cc} 2 & -1\\ 1 & 0\end{array}\right] \left[\begin{array}{c} x_1\\ x_2\end{array}\right] = \left[\begin{array}{cc} 2x_1 - x_2\\ x_2\end{array}\right] = T\left(\left[\begin{array}{c} x_1\\ x_2\end{array}\right]\right)$$

Observations:
1.
$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - x_2 \\ x_1 \end{bmatrix}$$
 is a linear transformation.

2. It can be written as a matrix transformation induced by an 2 x 2 matrix A. $\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$

Think again:

Can any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ be written as a matrix transformation induced by an *m* x *n* matrix *A*?

If the answer is yes, then:

How can we determine the $m \ge n$ matrix A, given the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$?

Let $T: \mathcal{R}^n \to \mathcal{R}^m$ be linear. Then there is a unique $m \times n$ matrix

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix},$$

whose columns are the images under T of the standard vectors for \mathcal{R}^n , such that $T(\mathbf{v}) = A\mathbf{v}$ for all \mathbf{v} in \mathcal{R}^n .

Proof

Let $T: \mathcal{R}^n \to \mathcal{R}^m$ be linear. Then there is a unique $m \times n$ matrix

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix},$$

whose columns are the images under R of the standard vectors for \mathcal{R}^n , such that $T(\mathbf{v}) = A\mathbf{v}$ for all \mathbf{v} in \mathcal{R}^n .

Definition

Let $T: \mathcal{R}^n \to \mathcal{R}^m$ be a linear transformation. We call the $m \times n$ matrix

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

the standard matrix of T.

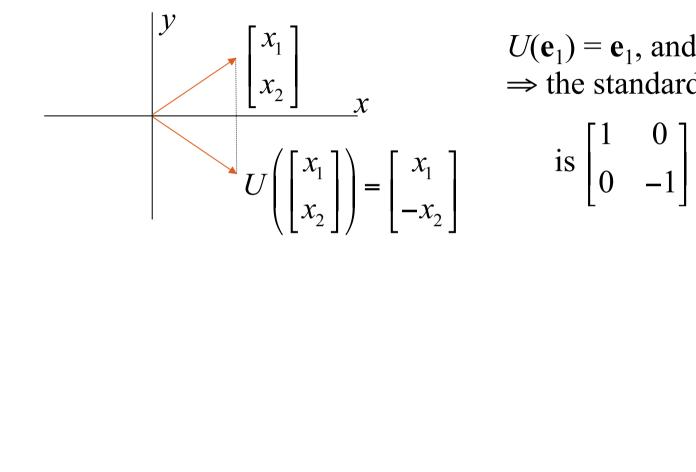
Note that, by Theorem 2.9, the standard matrix *A* of *T* has the property that $T(\mathbf{v}) = A\mathbf{v}$ for every \mathbf{v} in \mathbb{R}^n .

ple:

$$T: \mathcal{R}^3 \to \mathcal{R}^2 \text{ with } T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} 3x_1 - 4x_2 \\ 2x_1 + x_3 \end{bmatrix}$$

Find the standard matrix of *T*.

Example: Reflection of \mathcal{R}^2 about the x-axis.



 $U(\mathbf{e}_1) = \mathbf{e}_1$, and $U(\mathbf{e}_2) = -\mathbf{e}_2$ \Rightarrow the standard matrix of U

Homework Set for Section 2.7

Section 2.7: Problems 1-6, 10-12, 21-23, 26, 29, 32-34