2.4 The Inverse of a Matrix

Theorem 2.5

Let A be an $n \times n$ matrix. Then A is invertible if and only if the reduced row echelon form of A is I_n .

Proof First, suppose that A is invertible.

For
$$\mathbf{v} \in \mathcal{R}^n$$
, $A\mathbf{v} = \mathbf{0} \Rightarrow A^{-1}A\mathbf{v} = A^{-1}\mathbf{0} = \mathbf{0} \Rightarrow \mathbf{v} = \mathbf{0}$
 $\Rightarrow \operatorname{rank} A = n$ by Theorem 1.8 (d)(f)

 \Rightarrow reduced row echelon form of A is I_n since A is $n \times n$

So, the reduced row echelon form of A must equal I_n .

Theorem 2.5

Let A be an $n \times n$ matrix. Then A is invertible if and only if the reduced row echelon form of A is I_n .

Proof Conversely, suppose that the reduced row echelon form of A equals I_n .

Therefore, A is invertible.

Theorem 2.5

Let A be an $n \times n$ matrix. Then A is invertible if and only if the reduced row echelon form of A is I_n .

Examples:

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 4 & 8 \end{array} \right]$$

has the reduced row echelon form $I_n \Rightarrow$ invertible. $B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$ has the reduced row echelon form $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ \Rightarrow not invertible.

Algorithm for Matrix Inversion

Let A be an $n \times n$ matrix. Use elementary row operations to transform $\begin{bmatrix} A & I_n \end{bmatrix}$ into the form $\begin{bmatrix} R & B \end{bmatrix}$, where R is a matrix in reduced row echelon form. Then either

(a) $R = I_n$, in which case A is invertible and $B = A^{-1}$; or

(b) $R \neq I_n$, in which case A is not invertible.

Proof (a) $[R B] = P[A I_n] = [PA PI_n] = [PA P]$ (b) By Thm 2.5

Algorithm for Matrix Inversion

Let A be an $n \times n$ matrix. Use elementary row operations to transform $\begin{bmatrix} A & I_n \end{bmatrix}$ into the form $\begin{bmatrix} R & B \end{bmatrix}$, where R is a matrix in reduced row echelon form. Then either

(a) $R = I_n$, in which case A is invertible and $B = A^{-1}$; or

(b) $R \neq I_n$, in which case A is not invertible.

Example:

$$\begin{bmatrix} A & I_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 2 & 5 & 6 & | & 0 & 1 & 0 \\ 3 & 4 & 8 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & -2 & -1 & | & -3 & 0 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & -7 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7 & -2 & -1 \end{bmatrix} \xrightarrow{A^{-1}} A^{-1}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 0 & | & -20 & 6 & 3 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7 & -2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -16 & 4 & 3 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7 & -2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -16 & 4 & 3 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7 & -2 & -1 \end{bmatrix} = \begin{bmatrix} I_3 & B \end{bmatrix}$$

Algorithm for Computing $A^{-1}B$

Let A be an invertible $n \times n$ matrix and B be an $n \times p$ matrix. Suppose that the $n \times (n+p)$ matrix $\begin{bmatrix} A & B \end{bmatrix}$ is transformed by means of elementary row operations into the matrix $\begin{bmatrix} I_n & C \end{bmatrix}$ in reduced row echelon form. Then $C = A^{-1}B$.

Let A be an $n \times n$ matrix. The following statements are equivalent:

- (a) A is invertible.
- (b) The reduced row echelon form of A is I_n .
- (c) The rank of A equals n.
- (d) The span of the columns of A is \mathcal{R}^n .
- (e) The equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathcal{R}^n .
- (f) The nullity of A equals zero.
- (g) The columns of A are linearly independent.

(h) The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$.

- (i) There exists an $n \times n$ matrix B such that $BA = I_n$
- (j) There exists an $n \times n$ matrix C such that $AC = I_n$

(k) A is a product of elementary matrices.

Let A be an $n \times n$ matrix. The following statements are equivalent:

(a) A is invertible.

(b) The reduced row echelon form of A is I_n .

(c) The rank of A equals n.

(d) The span of the columns of A is \mathcal{R}^n .

(e) The equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathcal{R}^n .

Proof

(a) ⇔ (b): Theorem 2.5.
(d) ⇔ (e): By definition of span and matrix-vector products.

(b) \Leftrightarrow (c): rank(A) = the number of nonzero rows of reduced row echelon form of A, $I_n = n$.

(a) → (e) x = A⁻¹b.
(e) → (a) Ax = b has at least a solution for any b in Rⁿ.
Let A = PR, where R is the reduced row echelon form.
Suppose A is NOT invertible, then R is not I_n, and the last row of R is zero.

Let A be an $n \times n$ matrix. The following statements are equivalent:

(a) A is invertible.

(b) The reduced row echelon form of A is I_n .

- (c) The rank of A equals n.
- (f) The nullity of A equals zero.
- (g) The columns of A are linearly independent.

Proof

- (c) \Leftrightarrow (f) Nullity = $n \operatorname{rank}(A) = n n = 0$. (# of free variables = 0)
- (g) \Leftrightarrow (c) Thm 1.8 (a)(d).
- (g) \Leftrightarrow (f) Thm 1.8 (a)(c).
- (g) ⇔ The columns of R are linearly independent. They are all pivot columns.⇔R=In ⇔(b).

Let A be an $n \times n$ matrix. The following statements are equivalent:

(a) A is invertible.

(b) The reduced row echelon form of A is I_n .

(g) The columns of A are linearly independent.

(h) The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$.

(k) A is a product of elementary matrices.

Proof (a) → (h): $\mathbf{x} = A^{-1} \mathbf{0} = \mathbf{0}$; (h) \Leftrightarrow (g): By definitions of 1.i. and matrix-vector product.

(b)
$$\bigstar$$
 (k) $I_n = E_k \dots E_2 E_1 A \bigstar E_k^{-1} = E_{k-1} \dots E_2 E_1 A \bigstar A = E_1^{-1}$
 $E_2^{-1} \dots E_k^{-1}$
(k) \bigstar (a) $A =$ is invertible (Thm 2.2 b)

Let A be an $n \times n$ matrix. The following statements are equivalent:

- (a) A is invertible.
- (b) The reduced row echelon form of A is I_n .
- (e) The equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathcal{R}^n .
- (h) The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$.
- (i) There exists an $n \times n$ matrix B such that $BA = I_n$
- (j) There exists an $n \times n$ matrix C such that $AC = I_n$

Proof (a) \rightarrow (i) obvious. (a) \rightarrow (j) obvious (by def.)

(i) \rightarrow (h) \rightarrow (a) : Let **x** be any vector in \mathcal{R}^n such that $A\mathbf{x} = \mathbf{0}$. Then $\mathbf{x} =$

(j) \rightarrow (e) \rightarrow (a): Let **b** be any vector in \mathcal{R}^n and let $\mathbf{v} = C\mathbf{b}$. Then $A\mathbf{v} =$

11

Let A be an $n \times n$ matrix. The following statements are equivalent:

- (a) A is invertible.
- (b) The reduced row echelon form of A is I_n .
- (c) The rank of A equals n.
- (d) The span of the columns of A is \mathcal{R}^n .
- (e) The equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathcal{R}^n .
- (f) The nullity of A equals zero.
- (g) The columns of A are linearly independent.
- (h) The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$.
- (i) There exists an $n \times n$ matrix B such that $BA = I_n$
- (j) There exists an $n \times n$ matrix C such that $AC = I_n$

(k) A is a product of elementary matrices.

 $R = I_n$ rank(A) = n span { $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ } = \mathcal{R}^n

$$\forall \mathbf{b} \in \mathcal{R}^n, \exists \mathbf{x} \in \mathcal{R}^n s.t. A \mathbf{x} = \mathbf{b}$$

nullity(A) = 0

$$\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$$
 is l.i.

 $\stackrel{n}{A} = E_1 E_2 \cdots E_k$

Note that though only one of $BA = I_n$ or $AC = I_n$ is needed to show the invertibility of A, the matrix A has to be square.

There are nonsquare matrices *A* and *C* for which the product AC is an identity matrix. For instance, let

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 & 1 \\ -1 & -1 \\ 0 & 2 \end{bmatrix}.$$

Then AC =

Of course, A and C are not invertible.

Homework Set for Section 2.4

Section 2.4: Problems 1, 8, 14, 19, 21, 22, 27, 28, 29, 31, 32.