1.7 Linear Dependence and Linear Independence

Given a set of vectors, how to determine if there are any vectors that are linear combinations of other vectors?

Example

Consider the set $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4}$ where

$$\mathbf{u}_{1} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} -1 \\ -8 \\ 13 \\ 8 \end{bmatrix}, \text{ and } \mathbf{u}_{4} = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix}.$$

Is \mathbf{u}_4 a linear combination of others?

Can any vector be removed from \mathcal{S} without affecting its span?

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ -1 & 1 & -8 & 1 \\ 2 & -1 & 13 & -2 \\ 1 & -1 & 8 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 5 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

1

Given a set of vectors, how to determine if there is any vector in it that is a linear combination of the other vectors?

Idea: in $\{\mathbf{u}_1, ..., \mathbf{u}_i, ..., \mathbf{u}_k\}$, if there exists any \mathbf{u}_i that is a linear combination of other vectors, then there exists scalars $c_1, ..., c_i, ..., c_k$, that are not all zero, such that $c_1\mathbf{u}_1 + \cdots + c_i\mathbf{u}_i + \cdots + c_k\mathbf{u}_k = \mathbf{0}$.

Definition (L.D.)

A set of k vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ in \mathcal{R}^n is called **linearly dependent** if there exist scalars c_1, c_2, \dots, c_k , not all zero, such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k = \mathbf{0}.$$

In this case, we also say that the vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly dependent.

Definition (L.D.)

A set of k vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ in \mathcal{R}^n is called **linearly dependent** if there exist scalars c_1, c_2, \dots, c_k , not all zero, such that

```
c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{0}.
```

In this case, we also say that the vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly dependent.

Definition (L.I.)

A set of k vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ in \mathcal{R}^n is called **linearly independent** if the only scalars c_1, c_2, \dots, c_k such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{0}$$

are $c_1 = c_2 = \cdots = c_k = 0$. In this case, we also say that **the vectors** $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent.

Property

Any finite set $S = \{0, u_1, u_2, ..., u_k\}$ that contains the zero vector is L.D.

since $1 \cdot \mathbf{0} + 0 \cdot \mathbf{u}_1 + 0 \cdot \mathbf{u}_2 + \cdots + 0 \cdot \mathbf{u}_k = \mathbf{0}$.

Property (Condition for L.D.)

The set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is **linearly dependent** if and only if $A\mathbf{x} = \mathbf{0}$ has a nonzero solution, where $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}$.

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{0} \iff \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_k \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} = \mathbf{0}.$$

Example:

$$\mathcal{S} = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\4\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\} \text{ L.D. or L.I.? and which element(s), if any, can be linearly combined by others?} \\ A = \begin{bmatrix} \cdots \end{bmatrix} \text{ the augmented matrix of } A\mathbf{x} = \mathbf{0} \text{ is} \\ \begin{bmatrix} 1 & 1 & 1 & 1 & 0\\2 & 0 & 4 & 2 & 0\\1 & 1 & 1 & 3 & 0 \end{bmatrix} \xrightarrow{\text{reduced row}}_{\text{echelon form}} \begin{bmatrix} 1 & 0 & 2 & 0 & 0\\0 & 1 & -1 & 0 & 0\\0 & 0 & 0 & 1 & 0 \end{bmatrix} \\ \Rightarrow \text{ the general solution of } A\mathbf{x} = \mathbf{0} \text{ is} \begin{cases} x_1 = -2x_3\\x_2 = x_3\\x_3 & \text{free}\\x_4 = 0 \end{cases} \xrightarrow{\text{always zero column, redundant.}} \\ \text{setting } x_3 = 1 \text{ leads to } -2 \begin{bmatrix} 1\\2\\1 \end{bmatrix} + 1 \begin{bmatrix} 1\\0\\1 \end{bmatrix} + 1 \begin{bmatrix} 1\\4\\1 \end{bmatrix} + 0 \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

the augmented matrix of
$$A\mathbf{x} = \mathbf{0}$$
 is

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 2 & 0 & 4 & 2 & 0 \\ 1 & 1 & 1 & 3 & 0 \end{bmatrix} \xrightarrow{\text{reduced row}} \begin{bmatrix} 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow \text{ the general solution of } A\mathbf{x} = \mathbf{0} \text{ is } \begin{array}{c} x_1 = -2x_3 \\ x_2 = x_3 \\ x_3 & \text{free} \\ x_4 = 0 \end{array} \qquad \text{always zero column, redundant.}$$

$$\text{setting } x_3 = 1 \text{ leads to } -2 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
Conclusion: *S* is L.D., and the last vector is not a linear combination of others.

In general, the set is L.I. if and only if there is not any free variable.

Examples

$$S_{1} = \left\{ \begin{bmatrix} 3 \\ -1 \\ 7 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix} \right\} L.D. \quad S_{2} = \left\{ \begin{bmatrix} -4 \\ 12 \\ 6 \end{bmatrix}, \begin{bmatrix} -10 \\ 30 \\ 15 \end{bmatrix} \right\} L.D.$$

$$2.5u_{1} = u_{2}$$

$$S_{3} = \left\{ \begin{bmatrix} -3 \\ 7 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 9 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \right\} L.I. \quad S_{4} = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ -2 \\ 3 \end{bmatrix} \right\}$$

$$L.D.$$

- Questions
 - On which conditions will the columns of A be linearly independent?

Let us define $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$.

- 1. Does $A\mathbf{x} = \mathbf{0}$ always have a solution?
- 2. Can $A\mathbf{x} = \mathbf{0}$ have more than one solution?
- \rightarrow $A\mathbf{x} = \mathbf{0}$ should always have exactly one solution (i.e., $\mathbf{x}=\mathbf{0}$).
- 3. Can $A\mathbf{x} = \mathbf{b}$ have infinitely many solutions (for some nonzero \mathbf{b})?
- 4. Does $A\mathbf{x} = \mathbf{b}$ always have a solution?
- \rightarrow $A\mathbf{x} = \mathbf{b}$ should always have no more than one solution.
- 5. What is **rank** *A*? How about **nullity** *A*?
- ⁸• 6. What does the **reduced row echelon form** of *A* look like?

The following statements about an $m \times n$ matrix A are equivalent:

(a) The columns of A are **linearly independent**.

(b) The equation $A\mathbf{x} = \mathbf{b}$ has at most one solution for each \mathbf{b} in \mathcal{R}^m .

(c) The **nullity** of A is zero.

(d) The **rank** of A is n, the number of columns of A.

(e) The columns of the **reduced row echelon form** of A are distinct **standard vectors** in \mathcal{R}^m .

(f) The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$.

(g) There is a **pivot position** in each column of A.

Proof

The following statements about an $m \times n$ matrix A are equivalent:

(a) The columns of A are **linearly independent**.

(b) The equation $A\mathbf{x} = \mathbf{b}$ has at most one solution for each \mathbf{b} in \mathcal{R}^m .

(c) The **nullity** of A is zero.

(d) The **rank** of A is n, the number of columns of A.

(e) The columns of the **reduced row echelon form** of A are distinct **standard vectors** in \mathcal{R}^m .

(f) The only solution of $A\mathbf{x} = \mathbf{0}$ is **0**.

(g) There is a **pivot position** in each column of A.

Proof (a) ⇔ (f): by definition, as noted.
(b) ⇒ (c): (b) ⇒ Ax = 0 has the only solution x = 0
⇒ general solution Ax = 0 has no free variables
⇒ nullity of A is zero.
(c) ⇒ (d): rank A + nullity A = n.
(d) ⇒ (e): every column of is A a pivot column
⇒ in the reduced row echelon form of A, every column has the form [0 … 0 1 0 … 0]^T, and the positions of 1's are different.

(e) ⇒ (f): (e) ⇒ the reduced row echelon form of A is R = [e₁ e₂ ... e_n], where e_i is the *i*th standard vector in *R^m*, and clearly Ax = 0 has the only solution x = 0.
(f) ⇒ (b): suppose u and v are both solutions to Ax = b ⇒ A(u - v) = Au - Av = b - b = 0 ⇒ u - v is the zero solution to Ax = 0 i.e., u = v.
(f) ⇔ (g): no free variable in the solution of Ax = 0

Definition

A system of linear equations $A\mathbf{x} = \mathbf{b}$ is called **homogeneous** if $\mathbf{b} = \mathbf{0}$.

Properties of a homogeneous system of linear equations: $A\mathbf{x} = \mathbf{0}$

- (1) always consistent, since **x**=**0** is a solution;
- (2) if it has nonzero solutions, then columns of A are L.D.;

(3) if number of variables > number of equations, then it has nonzero solutions, since free variables exist.

Example $A\mathbf{x} = \mathbf{0} \text{ with } \begin{bmatrix} 1 & -4 & 2 & -1 & 2 \\ 2 & -8 & 3 & 2 & -1 \end{bmatrix}$ The reduced row echelon form of $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ is $\begin{bmatrix} 1 & -4 & 0 & 7 & -8 & 0 \\ 0 & 0 & 1 & -4 & 5 & 0 \end{bmatrix}$ $\Rightarrow \text{ the general solution is } \begin{cases} x_1 = 4x_2 & -7x_4 + 8x_5 \\ x_2 & \text{ free} \\ x_3 = & 4x_4 & -5x_5 \\ x_4 & \text{ free} \\ x_5 & \text{ free} \end{cases}$

Property

When a **parametric representation** of the general solution to $A\mathbf{x} = \mathbf{0}$ is obtained by the method described in Section 1.3, the vectors that appear in the parametric representation are **linearly independent**.

Vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ in \mathcal{R}^n are **linearly dependent** if and only if $\mathbf{u}_1 = \mathbf{0}$ or there exists an $i \ge 2$ such that \mathbf{u}_i is a **linear combination** of the preceding vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_{i-1}$.

Proof

Vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ in \mathcal{R}^n are **linearly dependent** if and only if $\mathbf{u}_1 = \mathbf{0}$ or there exists an $i \geq 2$ such that \mathbf{u}_i is a **linear combination** of the preceding vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_{i-1}$.

Proof "if (⇐)": simple, you show it. "only if (⇒)": Since { \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_k } is L.D., $\exists c_1, c_2, ..., c_k$, not all zero, such that $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k = \mathbf{0}$. Let $i = \max \{j: c_j \neq 0\}$. Case (1): $i = 1 \Rightarrow c_1\mathbf{u}_1 = \mathbf{0} \Rightarrow \mathbf{u}_1 = \mathbf{0}$ Case (2): $i > 1 \Rightarrow c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_i\mathbf{u}_i = \mathbf{0}$ $\Rightarrow \mathbf{u}_i = \frac{-c_1}{c_i}\mathbf{u}_1 - \frac{c_2}{c_i}\mathbf{u}_2 - \cdots - \frac{c_{i-1}}{c_i}\mathbf{u}_{i-1}$

(1) For a 1-vector set, $\{\mathbf{u}\}$ is L.I. as long as $\mathbf{u} \neq \mathbf{0}$. The set $\{\mathbf{0}\}$ is L.D. (2) For a 2-vector set,

 $\begin{aligned} \{\mathbf{u}_1, \mathbf{u}_2\} \text{ is L.D.} &\iff \mathbf{u}_1 = \mathbf{0}, \text{ or } \mathbf{u}_2 \text{ is a multiple of } \mathbf{u}_1. \\ &\iff \text{ one vector is a multiple of the other.} \end{aligned}$

(3) Let $\mathcal{S} = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ be a linear independent subset of \mathcal{R}^n , and \mathbf{v} be in \mathcal{R}^n . Then $\mathbf{v} \notin \text{Span } \mathcal{S} \Leftrightarrow \mathcal{S} \cup {\mathbf{v}}$ is L.I.

(4)Every subset of \mathcal{R}^n containing more than n vectors must be L.D.

(5)No vector can be removed from a set $\mathcal{S} \subset \mathcal{R}^n$ without changing its span

 $\Rightarrow S$ is L.I.

Summary and Review:

Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ be an $m \mathbf{x} n$ matrix.

Let $S = \{a_1, a_2, ..., a_n\}.$

1) Conditions for S to generate the whole space \mathcal{R}^m ?

2) Conditions for S to be linearly independent?

Rank of matrices, solutions for systems of linear equations, reduced row echelon forms, and linear independence

The rank of <i>A</i>	The number of solutions of Ax=b	The columns of <i>A</i>	The reduced row echelon form <i>R</i> of <i>A</i>
$\operatorname{rank} A = m$	$A\mathbf{x} = \mathbf{b}$ has at least one solution for every \mathbf{b} in \mathcal{R}^m .	The columns of A generate $\boldsymbol{\mathcal{R}}^{m}$.	Every row of <i>R</i> contains a pivot position.
$\operatorname{rank} A = n$	$A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b} in \mathcal{R}^m .	The columns of <i>A</i> are linearly independent.	Every column of <i>R</i> contains a pivot position.

Homework Set for 1.7

Section 1.7: Problems 1, 3, 7, 9, 13, 17, 21, 23, 25, 27, 29, 31, 39, 43, 49, 51, 53, 59, 61, 63, 69, 71, 75, 79

Chapter 1 in a nutshell

- Matrices, vectors.
- Linear combinations of vectors/ Matrix-Vector Product
- System of Linear Equations
 - Solution Set
 - Elementary row operations
 - (Reduced) row echelon forms
 - Gaussian Eliminations
- Rank, Nullity, basic variables, free variables
- Span of a set of vectors
 - Vectors in \mathcal{R}^m that generate \mathcal{R}^m .
- Linear Independence
 - Smallest set of vectors that has the same span