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Given a set of vectors, how to determine if there are any vectors that 
are linear combinations of other vectors? 

1.7 Linear Dependence and Linear Independence 

Example
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Can any vector be removed from S without a↵ecting its span?
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Is u4 a linear combination of others?
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Given a set of vectors, how to determine if there is any vector in it 
that is a linear combination of the other vectors? 
Idea:  in {u1, …, ui, …, uk}, if there exists any ui that is a linear  
combination of other vectors, then there exists scalars c1, …, ci, …, ck,  
that are not all zero,  such that c1u1 +  + ciui +  + ckuk = 0.   

Definition (L.D.)

A set of k vectors {u1,u2, . . . ,uk} in Rn

is called linearly dependent if there

exist scalars c1, c2, · · · , ck, not all zero, such that

c1u1 + c2u2 + · · ·+ ckuk = 0.

In this case, we also say that the vectors u1,u2, · · · ,uk are linearly depen-

dent.
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Definition (L.D.)


Definition (L.I.)


A set of k vectors {u1,u2, . . . ,uk} in Rn
is called linearly dependent if there

exist scalars c1, c2, · · · , ck, not all zero, such that

c1u1 + c2u2 + · · ·+ ckuk = 0.

In this case, we also say that the vectors u1,u2, · · · ,uk are linearly depen-

dent.

A set of k vectors {u1,u2, . . . ,uk} in Rn
is called linearly independent if the

only scalars c1, c2, · · · , ck such that

c1u1 + c2u2 + · · ·+ ckuk = 0

are c1 = c2 = · · · = ck = 0. In this case, we also say that the vectors

u1,u2, · · · ,uk are linearly independent.
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Property


Property (Condition for L.D.)




the augmented matrix of Ax = 0 is 

reduced row 
echelon form 

⇒ the general solution of Ax = 0 is 

setting x3 = 1 leads to 

always zero 
column, 
redundant. 
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Example: 

L.D. or L.I.? and which element(s), if 
any, can be linearly combined by others? 
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the augmented matrix of Ax = 0 is 

reduced row 
echelon form 

⇒ the general solution of Ax = 0 is 

setting x3 = 1 leads to 

Conclusion: S  is L.D., and the last vector is not a linear combination 
                   of others. 
In general, the set is L.I. if and only if there is not any free variable. 

always zero 
column, 
redundant. 
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: L.D. : L.D. 
 
 

2.5u1 = u2 

: L.I. 

not multiple 

Examples 
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: L.D. 
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�  Questions  
� On which conditions will the columns of A be linearly independent? 
�  1. Does Ax = 0 always have a solution?  

�  2. Can Ax = 0 have more than one solution? 
� è Ax = 0 should always have exactly one solution (i.e., x=0). 

�  3. Can Ax = b have infinitely many solutions (for some nonzero b)? 

�  4. Does Ax = b always have a solution? 
� è Ax = b should always have no more than one solution. 

�  5. What is rank A? How about nullity A? 

�  6. What does the reduced row echelon form of A look like? 
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Proof


Theorem 1.8




Proof (a) ⇔ (f): by definition, as noted. 
          (b) ⇒ (c): (b) ⇒ Ax = 0 has the only solution x = 0 
                           ⇒ general solution Ax = 0 has no free variables 
                           ⇒ nullity of A is zero. 
          (c) ⇒ (d): rank A + nullity A = n. 
          (d) ⇒ (e): every column of is A a pivot column 
                           ⇒ in the reduced row echelon form of A, every 
                                column has the form [0  0 1 0  0]T, and the 
                                positions of 1’s are different. 10 

Theorem 1.8




          (e) ⇒ (f): (e) ⇒ the reduced row echelon form of A is R = 
                          [e1 e2  en], where ei is the ith standard vector in 
                          Rm, and clearly Ax = 0 has the only solution x = 0. 
          (f) ⇒ (b): suppose u and v are both solutions to Ax = b 
                           ⇒ A(u - v) = Au - Av = b - b = 0 
                           ⇒ u - v is the zero solution to Ax = 0 i.e., u = v. 
          (f) ⇔ (g): no free variable in the solution of Ax = 0 
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Example


Definition


Properties of a homogeneous system of linear equations: Ax = 0 
   (1) always consistent, since x=0 is a solution; 
   (2) if it has nonzero solutions, then columns of A are L.D.; 
   (3) if number of variables > number of equations, then it has nonzero 
   solutions, since free variables exist. 
    
    



S  = {} is L.I. due to 
the positions of the 1’s. 
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Property


2

66664

x1

x2

x3

x4

x5

3

77775
=

2

66664

4x2�7x4+8x5

x2

4x4 �5x5

x4

x5

3

77775
= x2

2

66664

4
1
0
0
0

3

77775
+ x4

2

66664

�7
0
4
1
0

3

77775
+ x5

2

66664

8
0
�5
0
1

3

77775

parametric 
representation 
of the general 
solution 



14 

Proof


Theorem 1.9
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Theorem 1.9


Proof  “if (⇐)”: simple, you show it. 
“only if (⇒)”: Since{u1, u2, …, uk} is L.D., ∃ c1, c2, …, ck, not all 
                        zero, such that c1u1 + c2u2 +  + ckuk = 0. 
                        Let i = max {j: cj ≠ 0}.  
                        Case (1): i = 1 ⇒ c1u1 = 0 ⇒ u1 = 0  
                        Case (2): i > 1 ⇒ c1u1 + c2u2 +  + ciui = 0 
                                                 
                                                ⇒ ui = 
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Properties of L.D. and L.I. Sets


(3) Let S == {u1,u2, . . . ,uk} be a linear independent subset of Rn
, and v be

in Rn
. Then

v /2 Span S , S [ {v} is L.I.



17 

Summary and Review:  
Let A = [a1 a2 … an] be an m x n matrix.  
Let S = {a1, a2, …, an}. 
1)   Conditions for S to generate the whole space Rm? 
2)   Conditions for S to be linearly independent? 
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Rank of matrices, solutions for systems of linear equations,  
reduced row echelon forms, and linear independence 

The rank of A The number of 
solutions of  
Ax=b 

The columns of A The reduced row 
echelon form R of 
A 

rank A = m Ax = b has at least 
one solution for 
every b in Rm. 

The columns of A 
generate Rm. 

Every row of R 
contains a pivot 
position. 

rank A = n Ax = b has at most 
one solution for 
every b in Rm. 

The columns of A are 
linearly independent. 

Every column of R 
contains a pivot 
position. 
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Section 1.7: Problems 1, 3, 7, 9, 13, 17, 21, 23, 25, 27, 29, 
31, 39, 43, 49, 51, 53, 59, 61, 63, 69, 71, 75, 79


Homework Set for 1.7 
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Chapter 1 in a nutshell 

� Matrices, vectors.  
�  Linear combinations of vectors/ Matrix-Vector Product 
�  System of Linear Equations 

�  Solution Set 
�  Elementary row operations 
�  (Reduced) row echelon forms 
�  Gaussian Eliminations 

� Rank, Nullity, basic variables, free variables 
�  Span of a set of vectors 

�  Vectors in Rm that generate Rm. 
� Linear Independence 

�  Smallest set of vectors that has the same span 


