

	al rule of nuclear s	stability (prone to decay)
• With e	even numbers of	ps and n	$s \rightarrow$ more stable
	stable isotopes	р	n
	168	even	even
	57	even	odd
	50	odd	even
	4	odd	odd
• With I	magic numbers of	ns or ns	
	2, 8, 20, 50, 82, 1	$26 \rightarrow n$	nore stable
	stable isotopes	5	D
	3	1	8
	2		9
	5		$P_{0}(C_{2})$

C-14 method

 $^{14}_{7}N + ^{1}_{0}n \rightarrow ^{14}_{6}C + ^{1}_{1}H$

$${}^{4}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$$

 $t_{1/2} = 5730 \text{ yr}$

In atmosphere: reaching an equilibrium ${}^{14}_{6}C/{}^{12}_{6}C$ remains constant

*CO₂ → *Organic molecule in plants → *animals ↓ From ¹⁴C/¹²C to determine age ← decay ← died (equilibrium stops)

Ex. If ratio is half that of atmosphere \rightarrow 5370 yr old

Limitation: can not be older than 20000 yr → radioactivity too low to be accurate

Checked with tree growth: accurate within 10%

Mass spec. can be used to determine the ratio

Elements with atomic # > 92 are synthesized
via artificial transmutations – transuranium elements
$$\begin{array}{l} 2^{38}_{92}U + \frac{1}{0}n \rightarrow \frac{239}{92}U \rightarrow \frac{239}{93}Np + \frac{0}{-1}e\\ neptunium\\ t_{1/2} = 23 \min \\ t_{1/2} = 2.35 \text{ days} \end{array}$$
$$\begin{array}{l} 2^{39}_{93}Np \rightarrow \frac{239}{94}Pu + \frac{0}{-1}e\\ plutonium\\ 2^{39}_{94}Pu + \frac{4}{2}He \rightarrow \frac{242}{96}Cm + \frac{1}{0}n\\ 2^{42}_{96}Cm + \frac{4}{2}He \rightarrow \frac{245}{98}Cf + \frac{1}{0}n\\ t_{1/2} = 44 \min \end{array}$$

Ex. The binding E per nucleon for the
$$\frac{4}{2}$$
He nucleus
AW(He) = 4.0026 amu AW(H) = 1.0078 amu
Mass including electrons
Mass of $\frac{4}{2}$ He nucleus = AW(He) - 2 m_e
Mass of $\frac{4}{2}$ He nucleus = AW(He) - 2 m_e
Mass of e^-
Mass of e^-
Mass of $\frac{1}{4}$ H nucleus = AW(H) - m_e
 $\Delta m = (4.0026 - 2m_e) - [2(1.0078 - m_e) + 2m_n]$
= 4.0026 - 2(1.0078) - 2(1.0087)
= -0.0304 amu
 $\Delta E = \Delta mc^2 = (-0.0304 \text{ amu})(1.66 \times 10^{-27} \text{ Kg/amu})(3.00 \times 10^8 \text{ m/s})^2$
= -4.54 × 10⁻¹² J/nucleus \Rightarrow 1.14 × 10⁻¹² J/nucleon
Overall: 2.73 × 10¹² J/mol + $\frac{4}{2}$ He \rightarrow 2 $\frac{1}{4}$ p + 2 $\frac{1}{0}$ n

Nuclear power \rightarrow thermal E \rightarrow steam \rightarrow steam engine biproducts \rightarrow reprocess \rightarrow reusable fuel electricity generation waste such as 90 Sr $t_{1/2} = 28.8$ yrs 239 Pu $t_{1/2} = 24400$ yrs \checkmark Fuels other than 235 U ${}^{238}_{92}$ U $\rightarrow {}^{239}_{93}$ Np $+ {}^{0}_{-1}$ e $t_{1/2} = 2.35$ days $t_{1/2} = 23$ min ${}^{239}_{93}$ Np $\rightarrow {}^{239}_{94}$ Pu $+ {}^{0}_{-1}$ e Breeder (toxic and flammable) ◎ Fusion

```
In the sun

\begin{array}{l} {}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{2}_{1}H + {}^{0}_{1}e \\ {}^{1}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{2}He \\ {}^{2}_{2}He + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + {}^{2}_{1}H \\ {}^{3}_{2}He + {}^{1}_{1}H \rightarrow {}^{4}_{2}He + {}^{0}_{1}e \end{array}
```

Products are generally not radioactive

High E necessary : to overcome repulsions occurs at high T – thermonuclear rxns

 ${}^{3}_{2}\text{He} + {}^{3}_{2}\text{He} \rightarrow {}^{4}_{2}\text{He} + 2{}^{1}_{1}\text{H}$

At 40,000,000 K - lowest of its kind

Initiated by an atomic bomb – hydrogen bomb

※ Effect of radiation	臺灣大學化學系 NTU Chemistry
Somatic damage: Genetic damage:	damage to the organism itself damage to the genetic machinery
Biological effects • The energy measured in 1 rad = 10^{-2} • The penetrating a α – stops at skii β – down 1 cm γ – highly penet	n rads (radiation absorbed dose) J/kg tissue ability n (within body: most damaging) trating (the most dangerous)
<u>radiation</u> β γ	concretelead1 mm2 m10 cm

$$\begin{array}{l} H_2O \xrightarrow{\gamma} H_2O \stackrel{+}{\longrightarrow} \frac{H_2O}{M_3O^+} \stackrel{+}{\longrightarrow} HO \stackrel{+}{\longrightarrow} H_2O \stackrel{+}{\longrightarrow} \frac{H_2O}{M_3O^+} \stackrel{+}{\longrightarrow} HO \stackrel{+}{$$

Typical radiation exposure per person

From nature (from radon)	300 mrem/year 200	
X-ray	~50	

Power plant ~0.2

Total

~370 mrem/year

* ${}^{222}_{86}$ Rn – decay product of ${}^{238}_{92}$ U (earth's crust)

Corge M. Whitesides Image: Angew. Chem. Int. Ed. 2015, 54, 3196 – 3209 Reinventing Chemistry The person next to me says, "What do you do?" I answer "Im a chemist." S/he responds: "Chemistry was the one course in high school I flunked. What is it that chemists do, anyway?" I have tried two types of answers. "Well, we make drugs. Like statins. Very useful. They are inhibitors of a protein called HMGA-CoA reductase, and they help to control cholesterol biosynthesis and limit cardiovascular disease."

"We change the way you live and die."