

Volume	of spherical atoms	
Volu	me of unit cell	
Corner atom:	1/8 V each	
Face atom:	1/2 V each	
Center atom:	1 V each	
imple cubic:	$8 \times 1/_8 V = V$	
ody-centered:	$8 \times 1/_8$ V + 1 V = 2 V	
ace-centered:	$8 \times 1/_8 V + 6 \times 1/_2 V = 4 V$	V

Ex. Mg: 3 <i>s</i> ²
3s and 3p merged at the bonding level: partially filled band

Zeolites (沸石): hydrated aluminosilicate minerals Framework structure encloses interconnected cavities occupied by large Mⁿ⁺ and H₂O In petroleum industry: catalyst for cracking and isomerization Ex. Faujasite (八面沸石)

 ⊘ Doping ✓ n-Type: Si dope ↑ n for negative 	ed with As (P, Sb, Bi) ↑ One more valence e ⁻ than Si TI Pb Bi
MO jump ea	Can be viewed as asily
✓ p-Type: Si dope ↓ p for positive	ed with B (Al, Ga, In) ↑ ┌─┐ One less valence e⁻ than Si
MO:	Now with holes (partially filled) Also conducts better

℁ Ionic solids

Electrostatic forces between cations and anions

臺灣大學化學系 NTU Chemistry

For binary solids: usually large anions in closest packing with smaller cations in the holes

$$\begin{split} & \text{liquid} \longrightarrow \text{gas} \qquad \Delta H^{\circ}_{\text{vap}} \\ & \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -RT \ln K \\ & \Delta H^{\circ}_{\text{vap}} = T\Delta S^{\circ}_{\text{vap}} = -RT \ln P_{\text{vap}} \\ & \Rightarrow \Delta H^{\circ}_{\text{vap}} = T\Delta S^{\circ}_{\text{vap}} = -RT \ln P_{\text{vap}} \\ & = \int \Delta H^{\circ}_{\text{vap}} = \int \Delta H^{\circ}_{\text{vap}} + \frac{\Delta S^{\circ}_{\text{vap}}}{R} \\ & = \int (-\frac{\Delta H^{\circ}_{\text{vap}}}{R}) (\frac{1}{T}) + \frac{\Delta S^{\circ}_{\text{vap}}}{R} \\ & = \int \Omega P_{\text{vap}} / \frac{1}{T} \implies \text{A straight line with slope} = -\frac{\Delta H^{\circ}_{\text{vap}}}{R} \\ & = \ln P_{\text{vap}} = \frac{\Delta S^{\circ}_{\text{vap}}}{R} \end{split}$$

Requirements of steam distillation

- 1. The substance to be distilled has $P_{vap} > 5 \text{ mmHg}$
- 2. Does not destroy by H_2O

Advantage

- 1. Distillation at low T
- 2. Water is cheap
- 3. Water has a small MW

