

The σ and π bond constitute the double bond σ bond: e⁻ density is centered between the two nuclei π bond: e⁻ density is centered on the sideways

More exposed \rightarrow More reactive

Sideway overlap is not so efficient: usually weaker

When the two *p* orbitals are orthogonal: no overlap $H_{I,C} \to H$ $H_{I,C} \to H$ $H_{I,C} \to$

(a) Bond order

$$bond order = \frac{\# of bonding e^- \# of anti-bonding e^-}{2}$$

$$For H_2: \quad bond order = \frac{2-0}{2} = 1$$

$$Ex. \quad H_2^+$$

$$M \quad H_2^+ \quad H^+ \quad bond order = \frac{1-0}{2} = \frac{1}{2}$$

$$bond order = \frac{1-0}{2} = \frac{1}{2}$$

$$Ext \quad H_2^+ \quad bond order = \frac{1-0}{2} = \frac{1}{2}$$

$$Ext \quad H_2^+ \quad H_2^+ \quad H_2^+ \quad bond order = \frac{1-0}{2} = \frac{1}{2}$$

(Magnetism	
	Two types:	paramagnetic diamagnetic (反磁)
In a magnetic field: Compound with unpaired electrons Has a permanent magnetic moment Attracted by a magnetic field → Paramagnetic (strong) Compound with paired electrons A magnetic moment will be induced by external magnetic field Repelled by the magnetic field → Diamagnetic (weak)		

For diatomic molecule $I = \mu R_e^2$

 μ : reduced mass

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

 $R_{\rm e}$ = average bond length

When $J = 0 \Rightarrow E_0 = 0$

$$J=1 \quad \Rightarrow \quad E_1=\frac{\hbar^2}{I}$$

$$E_1 - E_0 = \frac{\hbar^2}{I}$$

Obtained from exp ⇒ get bond length info

$$m(\Delta u)^{2} \bullet \Delta t \ge \frac{\hbar}{2} \qquad \Rightarrow \quad \frac{1}{2}m(\Delta u)^{2} \bullet \Delta t \ge \frac{\hbar}{4}$$

$$\Rightarrow \quad \Delta E \bullet \Delta t \ge \frac{\hbar}{4} \qquad \Rightarrow \quad h\Delta v \bullet \Delta t \ge \frac{\hbar}{4}$$

$$\Rightarrow \quad h\Delta v \bullet \Delta t \ge \frac{h}{2\pi 4} \qquad \Rightarrow \quad \Delta t \ge \frac{1}{8\pi\Delta v}$$

Qualitatively: $v \uparrow \qquad \Rightarrow \qquad \Delta t \downarrow$ (faster rate process)
For UV 10 nm apart $\Rightarrow \Delta t \ge 1.4 \times 10^{-18}$ s
For IR 6 cm⁻¹ apart $\Rightarrow \Delta t \ge 2.2 \times 10^{-13}$ s
Lifetime has to be this
long to differentiate