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Quantum Mechanics and
Atomic Theory

Electric
field (E)

Magnetic
field (H)

moving
direction

(wavelength)

t

t

※ Electromagnetic radiation (Maxwell, 1864) (nature of light)

Composed of oscillating perpendicular electric field and 
magnetic field

If t = 1 sec    1 cycle per second = 1 Hz = 1 s1

 = c c = 3.0 × 108 m/s
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※ The nature of matter

◎ Black body radiation (or box with a pinhole)

Ex.  A glowing iron when heated
T increases

red   white light
 decreases

Classical physics predicts 
continuous profile with no 
maxima

An object capable of emitting and absorbing all freq. 
of radiation uniformly

1901 Max Planck
Postulate: the energies are discrete and are integers of h

h = 6.626 × 1034 Js

Planck constant

Energies are gained or lost in nh
E = nh n is an integer

 : freq. of radiation absorbed or emitted

 Now the black body radiation profile can be derived
 Meaning:

The energy of light is quantized
Energy exchanged in whole “quanta” (quantum是複數)

energy 0 E 2E 3E 4E ……
# of particles no n1 n2 n3 n4 ……

E = h
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1887 Hertz
Light strikes on metal  e emitted

Lenard
A minimum E required (o)

 < o no e

 > o yes
Light intensity increases the number of e

but not the E of e

◎ Photoelectric phenomenon

1905 Einstein (1879 – 1955)
 Electromagnetic radiation is quantized

Ephoton = h = hc/

Predicted:
h – ho = KEe = ½mv2

Unrelated to 
light intensity

Work function (P):  The amount of work that the e must 
produce on leaving the body

Confirmed by Hughes, Richardson and Compton (1912)
and Millikan (1916)
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 Photon has mass (not a rest mass)

m =        = or E = mc2
E
c2

h
c

1922 Compton:  Confirmed by collision of X-rays and e

 Light has dual nature: wave and particle

1924 de Broglie (1892 – 1987)
Particle also has wave nature                        

h
v

m =
c

(cf:  m =        )

de Broglie equation:  = h
mv

Ex. me = 9.11 × 1031 kg
If traveling at a speed of 1.0 × 107 m/s

 =         =h
mv

6.626 × 1034 kgm2/s

(9.11 × 1031 kg)(1.0 × 107 m/s)

= 7.3 x 1011 m

In the range of X-ray
Same as the spacing between atoms in a crystal         

h
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1927 Davison and Germer (Bell lab)
A beam of e hitting a nickel crystal
 diffraction occurs
Verified the wave properties of e

Conclusion
All matter exhibits both particulate and wave properties

Larger particle
More particulate-like

Photons
More wave-like

※ The atomic spectrum of hydrogen

Atomic structure
Thomson: electron Rutherford: nucleus

Atomic spectrum of H
H2 in a high voltage spark  excited H atom

 emits light

Line spectrum of H
 The energy of e in H atom is quantized

E = h = hc/
From one energy state to another
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※ The Bohr model

1913 Bohr (1885 – 1962)

nucleus (with atomic number Z)

r

e circles around the nucleus
       (in a velocity of v)

v

Problems of classical physics:
accelerating charged particle  radiate energy

 lose E
 drops into nucleus

2
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
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Bohr’s model was based on experimental results
Proposed the angular momentum of the electron
could occur only in certain increment

mvr = nħ (ħ = h/2 n = 1, 2, 3….)
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Z: nuclear charge n: integer

Quantum number
n↑  r↑ (radius of orbital)

One mole with n = 1
 E = 13.6 eV = 1310 kJ per mol

n = ∞  E = 0 ( a reference point)

E

0

n = 1

n = 2

n = 3

n = ∞

13.6 n↓ E↓

Has to be ()
From n = 6   n = 1

En=6 = 2.178 × 1018(1/62) En=1 = 2.178 × 1018(1/12)

E = En=1 – En=6 = 2.178 × 1018[(1/12) – (1/62)]
= 2.118 × 1018 J

E = 2.178 × 1018 (Z2/n2) J


c

hE  
E

hc




m 10379.9
10118.2

)109979.2)(10626.6( 8
18

834












Ex. n = 1   n = 2

E = 2.178 × 1018(1/22 – 1) 
= 1.634 × 1018 J

 = 1.216 × 107 m = 121.6 × 109 m = 121.6 nm 
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For H: n = 5   n = 2 blue
n = 4   n = 2 green
n = 3   n = 2 red

Overall:  E = Efinal – Einitial = 2.178 × 1018 J 
1

n2
f

1

n2
i

–

n = 1  ground state
From n = 1  n = ∞  remove e from the ground state
E = 2.178 × 1018(1/∞2 – 1) = 2.178 × 1018 J

◎ Problems with Bohr’s model
Only works for H atom
 can not be correct

The idea of quantization is influential

※ The quantum mechanical
description of the atom

19251926
Heisenberg, de Broglie, Schrödinger

 Wave mechanics 
or quantum mechanics
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The Nobel Prize in Physics 

1911 Wilhelm Wien "for his discoveries regarding the laws governing 
the radiation of heat" 

1918 Max Karl Ernst Ludwig Planck "in recognition of the services he 
rendered to the advancement of Physics by his discovery of energy 
quanta" 

1921 Albert Einstein "for his services to Theoretical Physics, and 
especially for his discovery of the law of the photoelectric effect" 

1922 Niels Henrik David Bohr "for his services in the investigation 
of the structure of atoms and of the radiation emanating from them" 

1929 Prince Louis-Victor Pierre Raymond de Broglie
"for his discovery of the wave nature of electrons" 

1932 Werner Karl Heisenberg "for the creation of quantum 
mechanics, the application of which has, inter alia, led to the 
discovery of the allotropic forms of hydrogen" 

1933 Erwin Schrödinger and Paul Adrien Maurice Dirac
"for the discovery of new productive forms of atomic theory“

1945 Wolfgang Pauli "for the discovery of the Exclusion Principle, 
also called the Pauli Principle" 

◎ A simple model:  standing wave of a confined string

Length = l

½ 
: wave length

 is smaller   energy is higher

A node (節點): zero amplitude

3/2 

With one node:

With two nodes:
 is even smaller   E is even higher

E = h = hc/

There are limitations: l = n(½ ) or  = 2l /n
n = 1,  = 2l
n = 2,  = l

 (= 2/2 )
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If in a circle

r

Limitations: 2r = n n = 1, 2, 3…….

Apply de Broglie equation:





mv
h


mv
nh

nr  2

n
nh

mvr 
2

※ Schrödinger equation

Ĥ = E

Energy of the atom:  PE + KE of e

Wave function: describes e position in space

An operator called Hamiltonian

Found many solutions

1 E1

2 E2

3 E3

orbital corresponding E

A general form
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※ Heisenberg’s uncertainty principle

In fact, the exact path of e can not be determined

x･p ≧
h
4

momentum
(mv): uncertainty of particle momentum

Uncertainty of 
particle position

Ex. Hydrogen atom:  r ~ 0.05 nm
Assume positional accuracy of e : 1% of r

Q: v ?

Soln: x = (0.05 nm)(0.01) = 5 × 104 nm = 5 × 1013 m

me = 9.11 × 1031 kg

h = 6.626 × 1034 kg･m2/s 

4
h

px 
4
h

vmx 

m/s 1015.1
4

8



xm

h
v highly inaccurate

However, for a ball with r = 0.05 m, m = 0.2 kg
x = (0.05 m)(0.01) = 5 × 104 m 
v = 5 × 1031 m/s very accurate

 Macroscopically, no problem
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※ The particle in a box

A hypothetical situation
1. Illustrate the math
2. Show some characteristics of wave function
3. Show how E quantization occurs

The model E

x = 0 x = L

V(x) = V(x) = 0∞ V(x) = ∞

Particle mass: m
One dimensional movement (on x-axis)
The only possible energy is KE

Potential E

In Schrödinger equation

The operator for KE: 2

22

2 dx
d

m




Ĥ = E 
E

dx
d

m
 2

22

2


The connection with classical physics
The classical wave equation for standing wave:
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Use de Broglie eq.
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A function of x
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
E

dx
d

m
 2

22

2



22

2 2


mE
dx
d



2nd derivative of a function = the same function
 Points to a sine function

Ex.

kxAk

kxkAk
dx

kxd
Ak

kxk
dx
d

A
dx

kxd
dx
d

AkxA
dx
d

sin                   

)sin(
cos

                     

)cos()
sin

()sin(

2

2

2







Compare 


22

2 2
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d
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d
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2

2

and

If Asinkx =   2
2

2

k
dx
d



 2
2 2



mE
k  

m
k

E
2

22


A, k ?

Apply boundary conditions (to make sense):
1. Must be confined in the box
2. The total probability of finding the particle = 1
3. The wave function must be continuous
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 = Asin(kx)

1. At x = 0  = 0
At x = L  = 0

for sin = 0   = 0o, 180o, 360o, ….

At x = 0  = Asin(kx) = Asin(0) = 0
At x = L  = Asin(kL) = 0

 kL = n  n = 1, 2, 3, ..
L

n
k




2. Important: The physical meaning of 
is that 2 is the probability

Total probability
of finding the
particle in the box

 
L

dxx
0

2 1)(
Thus:

(x) = Asin(kx)

2(x) = A2sin2(kx) = )(sin22 x
L

n
A



 
L

dxx
L

n
A

0

22 1)(sin


 
L

A
dxx

L
n

0 2
2 1

)(sin


  )2sin(
4
1

2
1

)(sin2 ax
a

xdxax

Ref:

=

2

1
2 A
L
 

L
A

2









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 = Asin(kx)

 )sin(
2

)( x
L

n
L

x
 

2

222222
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2

2

1 8mL
h

E 
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2
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2
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
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1

0

E1
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E3

0 L2/L

h2

8mL2

2
L

2
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2
L

1

2

3

0 node

1 node

2 nodes

0 L2/L

2
L

2
1

2
2

2
3

2
L

2
L

Boundary cond.   quantized E level, n: quantum #

n = 0  (x) = 0, 2(x) = 0   can’t be true  
 n ≠ 0, lowest E ≠ 0
 n = 1 having the lowest E (zero-point energy)
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※ The wave equation for the hydrogen atom

 The electron movement in three dimension is considered

 Potential E due to charge-charge attraction is included

 Apply boundary conditions
 Solve the differential equation
 Obtain a set of solutions:

the wave functions for an electron

The quantum numbers appear:
n – the principal quantum number
l – the angular momentum quantum number
ml – the magnetic quantum number 

)()()(),,( ,,,,  mmllnmln rRr 

Using spherical polar coordinate

n = 1, l = 0, ml = 0 1s orbital




 









 e

a
Z

s

2
3

o
1

1

m 1029.5 11
2

2
o

o


em

h
a




(o = 8.85 × 1012 C2J1m1)

Z = 1 for hydrogen
oa

Zr


n = 2, l = 1, ml = +1 2px orbital







cossin 
24
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o
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








 e

a
Z
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r



x

y

z



Vacuum permittivity (真空介電係數）
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 Energies of hydrogen’s electron


















 

2

2
18

22
o

4

2

2

 J 10178.2
8 n

Z

h

me

n

Z
En 

n = 1, 2, 3, ..

E depends only on n
(true for one electron system)
Same as derived from Bohr’s model











2

2

2

422

n

Z

h

me
E



Cf.  Bohr’s model









 

2

2
18  J 10178.2

n

Z

(expressed in cgs unit)

※ Physical meaning of a wave function

Wave function :
Describes the state of a system
Contains information about all the properties of the 

system that are open to experimental determination
By uncertainty principle, it is difficult to know the exact 
position and direction of movement

◎ Born interpretation:

1
2

2
2

=
N1

N2

Probability of finding e at position 1

2: a function about probability distribution
Postulate:
The probability that a particle will be found in the volume 
element d at the point r is proportional to |(r)|2 d
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r

4r22

dr

r

2Ex. 1s orbital for H atom

Distance from the nucleus

Real interest:
Finding total probability of 
e at a particular distance

The real probability 
distribution:

2·(4r 2)

0.529 Å

The most probable 
distance to find e

 Same as based on 
Bohr model (n = 1)

 Called Bohr radius

d one 
electron

1d)4(
0

22 


rr

Bohr model: a fixed path

Quantum mechanics: a probability

Normally the pictorial boundary shows 90% probability 
inside the boundary
(for 1s of H, r = 1.4 Å)

◎ Summary

Note:
Simple pictorial models 
always oversimplify the phenomenon
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※ The characteristics of hydrogen orbitals

 The principal quantum number: n (integer)
n = 1, 2, 3, ……

Related to the size and E

n↑ r↑ E↑

Average distance

◎ Quantum numbers

 The angular quantum number: l (integer)
For each n, l = 0 ─ n－1

Related to the angular momentum of an e

Determines the shape

l = 0 s orbital
l = 1 p orbital
l = 2 d orbital
l = 3 f orbital

n = 1 l = 0  1s
n = 2 l = 0  2s
n = 2 l = 1  2p
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 The magnetic quantum number: ml (integer)
ml = l…….l (including 0)

Related to the orientation in space

l = 1  ml = 1, 0, 1  px, py, pz

l = 2  ml = 2, 1, 0, 1, 2  dz2, dx2-y2, dxy, dyz, dzx

◎ Summary

n determines the total E: )
2

(
1

o

22

2 a
eZ

n
En 

l determines the square of the total angular momentum:
M2 = l(l + 1)ħ2

ml determines the z component of the angular momentum:
Mz = mħ

0.7

0.5

0.3

0.1

0.5 1.0 1.5 2.0 2.5 3.0 3.5
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0.05

0.764 4.0 5.236 8.0

0.02

0.04

0.06

0.08

2.0 6.0 10.0 14.0 18.0

r/ao

※ Orbital shapes and energies

 Probability distribution 
of s orbitals

Spherical shape

Nodal surface or node

n↑ number of nodes↑ E↑

1s

2s

3s

(ao: Bohr radius)

r
s

r
s

r
s

r

4r22

1s

2s
3s
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rp

r/ao

 Probability distribution 
of p orbitals

rp

Contain two lobes

Three subshells

x

y

z

px x

y

z

py x

y

z

pz

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
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


cos 
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




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


 e

a
Z

zp

 d subshells: 5 orbitals

ml = 0 ±1 ±2
dz2 dxz dxy

dyz dx2 – y2

z

y
x

z

yx

dyzdxzdxy

z

yx

dx2y2

z
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dz2

z
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 The energy level

For H atom:  E is determined by n
same n  same E

 these orbitals are degenerate

E

1s

2s

3s

2p

3p 3d

※ Electron spin and Pauli principle

 In fact, a spin quantum number (ms) exists

ms = +1/2 or 1/2

Electron has its own angular momentum
 Imagine the electron as spinning on its own 

axis like earth
 Behaves like a tiny magnet

 Pauli (1900 – 1958) principle
In a given atom, two electrons can not have the same 
n, l, ml and ms

 In the same orbital, n, l, and ml must be the same
 ms must be different
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※ Polyelectronic atoms

Very complicate

Problem:  Electrons influence each other

Ex. He
+2

e

e

+2 e

+2

e

e

He+

He2+

2372 kJ

5248 kJ

Large difference 
due to e-e

repulsion 

◎ The effective charge approximation
(A very rough model)

Considering e-e repulsion as reducing the nuclear charge

In other words:
The electron is shielded (screened) from the 
nuclear charge by the other electrons

Ex. Hypothetical He eZeff

Becomes a one e system
 Leads to hydrogen like orbitals
 But the sizes and energies are different 

from that of H atom

Gives only a qualitative picture 
(similar to the hydrogen model)
Quantitatively not accurate



24

※ More about polyelectronic model

In hydrogen
Schrödinger equation can be solved exactly

In polyelectronic atoms
Schrödinger equation can not be solved exactly
Approximations are required

The self-consistent field (SCF) method can be used

 The self-consistent field (SCF) method

Considering the electron as residing in a field
Composed of the nucleus 

and other electrons (in their various orbitals)

The differential equation contains four parts
1. The usual KE contribution
2. Velectron-nucleus (attraction)
3. The PE due to the charge density of the es in the other 

occupied orbitals
4. The spin correlation effect

 A set of one electron equations can be obtained 
and solved using successive approximation
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 In polyatomic atoms
E of orbitals depend on n and l

Ens < Enp < End < Enf

ra
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al
 p

ro
b a

bi
lit

y

r

2s

2p

2s is more penetrating

Most probable distance is smaller for 2p
But E2s < E2p because of the penetrating effect of 2s

Similarly, E4s < E3d

More penetrating

5.0 10.0 15.0 20.0 25.0
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r/ao
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2p 2s

3p

3s

 There is a sharp separation of the individual electron shells

K shell

L shell

M shell

(radial distribution of H-orbitals)
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※ The aufbau principle (遞建原理)
and the periodic table

1869 Mendeleev
The first periodic table

A correlation of chemical properties 
and AW of elements

◎ The periodicity based on quantum mechanics

The aufbau principle: 
As the atomic number increased the electrons are added 
in order

atom electron configuration
1s 2s 2p

H 1s1 

He 1s2 
 n = 1 completely filled

C 1s22s22p2    

O 1s22s22p4     

Ne 1s22s22p6

 n = 1 
n = 2

Na 1s22s22p63s1 or [Ne]3s1

Hund’s rule:  the lowest-energy config. Is the one having 
maximum number of unpaired es in a set of degenerate orbitals

completely filled Core electrons

Valence electron
(involved in bonding)

Pauli exclusion principle
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Elements with the same valence electronic configuration
 Show similar chemical behavior
 Grouped in the vertical column

Li [He] 2s1

Na [Ne] 3s1

K [Ar] 4s1

Some notes
1. (n+1)s before nd
2. After lanthanide (La: [Xe]6s25d1)
 starts to fill in 4f

Ce: [Xe]6s24f15d1

 the lanthanide series
3. After actinide (Ac: [Rn]7s26d1)
 fill in 5f
 actinide series

H
Li Be B C N O F Ne

He

La

Ac

Ce

1A

2A 3A 4A 5A 6A 7A

8A

Th

lanthanides:

actinides:

Al Si
Ge

P S Cl
As Se Br
Sb Te

Po

I

d block
Transition metals

f block

4. Group labels: 1A, 2A….......8A
The total number of valance e

5. 1A8A : the main group elements



28

※ Periodic trends in atomic properties

◎ Ionization energy

X(g)   X+(g)  +  e energy change

Atom 
or ion Gas phase

Sometimes expressed as ionization potential
unit:  eV = 1.602 × 1019 J

~23 kcal/mol
~96 kJ/mol

Ex. Al:  [Ne]3s23p1

Al(g)   Al+(g)  +  e I1 = 580 kJ/mol
I2 = 1815
I3 = 2740
I4 = 11600

I1: The first ionization E
 Removes the highest-E e

 Reflect the E of the orbital
I2: The second ionization E

 The charge effect comes to play
I4: very large (Al3+:  [Ne])

 Starts to remove core e
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[Ne]3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6

Na Mg Al Si P S Cl Ar
I1 495 735 580 780 1060 1005 1255 1527
(kJ/mol)

General trend increasing

Shielding effect of core e  similar
Increasing of Z+

eff  more important

Special case
Al: the lower value is due to the shielding effect of 3s2

S:  the lower value is due to pairing energy 
(e-e repulsion)

Down a group

I1 (kJ/mol)
Li 520
Na 495
K 419
Rb 409
Cs 382

decreasing

size

increasing

Z+
eff similar  Size is more important
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◎ Electron affinity

X(g)  +  e  X(g) energy change
H (): exothermic

In a period: atomic number↑
energy change:  more negative

Ex. C N O
122.5 not available 141.4 (kJ/mol)

1s22s22p2 1s22s22p3 1s22s22p4

1s22s22p3 1s22s22p4 1s22s22p5

Z+
eff increase

N:  unstable due to e-e repulsion

Down a group

kJ/mol
F 327.8
Cl 348.7
Br 324.5
I 295.2

Less negative

Z+
eff similar  Size is more important

(the difference is not large)

F is too small: 
e-e repulsion is important
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◎ Atomic radius
difficult to determine just like orbitals

Usual way

Br Br

228 pm

Cut in half r for Br =          = 114 pm
228

2

(two identical atoms)

Often called
covalent atomic radii
 Smaller than orbital size

overlap

For metals:  treat similarly

General trend
Across the period – size ↓

Z+
eff is more important

Down a group – size ↑
due to the increase of n

※ The properties of a group: The alkali metals

◎ Information contained in the periodic table

 The config. of valence e determined the chemistry
 Fundamental classification of elements

metals and nonmetals
metals: give up e easily

low IP

IP
a period

Elements at left-hand side have lower IP

increasing
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Most reactive metal

Most reactive
non-metal:
accept e easily

H
Li Be B C N O F Ne

He

La
Ac

Ce

1A

2A 3A 4A 5A 6A 7A

8A

Th

Al Si

Ge

P S Cl

As Se Br

Sb Te

Po

I

Na

K

Rb

Cs
Fr

Mg

Ca

Sr

Ba
Ra

Sc Ti V Cr MnFe Co Ni CuZn Ga

Y Zr NbMo TcRu RhPd AgCd

Hf Ta W Re Os Ir Pt AuHg

Rf Db Sg Bh Hs Mt Ds Rg Cn

In

Tl
Unt

Sn

Pb
Fl

Xe

Rn
Uuo

At
Uus

Bi
Uup Lv

Ar

Kr

Pr NdPmSmEu GdTb Dy Ho LuYbEr Tm

Pa U Np PuAmCmBk Cf Es LrNoFmMd

lanthanides:

actinides:

Alkali
metals

Alkaline
earth
metals

Transition 
metals

Halogens Noble
gases

◎ The alkali metals
Li, Na, K, Rb, Cs, Fr

Most reactive
but rare in nature

d

mp

bp

IP

r

Good reducing agents
2Na(s) + Cl2(g)   2NaCl(s)
6Li(s)  +  N2(g)    2Li3N(s)
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In general:
reducing ability

Li < Na < K < Rb < Cs

In aqueous solution
Li > K > Na

Ex. 2M(s) + 2H2O(l)   H2(g) + 2M+(aq) + 2OH(aq)
+ energy

Reason: Li+ has high hydrating energy

Li+ 500 kJ/mol
Na+ 400
K+ 300

Small size
high charge density
stronger interaction with H2O


