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Spontaneity, Entropy (熵),
and Free Energy (自由能)10

※ The isothermal expansion

The model: Ideal gas
Isothermal process – T does not change
 E = 0
 E = q + w = 0
 q = w for isothermal process

P

V

P1

1/4P1 = P2

V1 V2 = 4V1

Initial state: P1, V1

Final state: P2, V2

Note:  Isothermal  T is constant
 PV = constant
 (PV) = 0

Since H = E + (PV)
 H = E

 Case I: One-step expansion – against vacuum
(free expansion)

Pext
ideal gas
(P, V, T)

Pext = 0

P1

V1

Pext = 0

P2

V2

wI = 0  E = 0, qI = 0
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 Case II: One-step expansion – against P2

P1

V1

P2

P2

V2

P2

wII = P2V = P2(V2 – V1)
= 1/4P1(4V1 – V1)
= 3/4P1V1  work flows out

E = 0 = qII + wII

 qII = wII = 3/4P1V1

P2 = 1/4P1

P

V

P1

1/4P1 = P2

V1 V2 = 4V1

Heat flows in

Area
= P2(V2 – V1)

 Case III: Two-step expansion

Pext = 1/2P1

P1

V1

Pext = 1/2P1

1/2P1

2V1

1/4P1

P2

V2

Step 1 against 1/2P1

Pext = 1/4P1

1/2P1

2V1

Step 2 against 1/4P1

Work for step 1: w = 1/2P1(2V1 – V1) = 1/2 P1V1

Work for step 2: w = 1/4P1(4V1 – 2V1) = 1/2 P1V1

Total: wIII = 1/2 P1V1  1/2 P1V1 = P1V1
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P

V

P1

1/4P1 = P2

V1 V2 = 4V12V1

1/2P1
|wIII| > |wII| > |wI|

P1V1
3/4P1V1 0

 Six-step expansion
P

V

P1

1/4P1 = P2

V1 V2 = 4V12V1

1/2P1

|wIV| > |wIII|

 Infinite-step expansion

P

V

P1

1/4P1 = P2

V1 V2 = 4V1

The maximum amount of work 
done by the system

for a reversible expansion


2

1

dmax

V

V
VPw

PV = nRT 
V

nRT
P 

1

2
12

max

)(        

)d(d
1

d
2

1

2

1

2

1

V
V

nRTVVnRT

VnRTV
V

nRTV
V

nRT
w

V

V

V

V

V

V

lnlnln

ln



 

V2 = 4V1  wmax = nRT ln4 = 1.4nRT
P1V1 = nRT  wmax = 1.4P1V1
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☆ Conclusion
For isothermal expansion of ideal gas

i

f
revmax V

V
nRTww ln

i

f
revmax V

V
nRTwq ln

Vf > Vi  q > 0
 heat flows in

※ The isothermal compression

V2  V1

 Case I One-step against P1

P

V

P1

1/4P1 = P2

V1 V2 = 4V1

wI = P1(V1 – V2) = P1(V1 – 4V1) = 3P1V1
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 Case II two-step compression

P

V

P1

1/4P1 = P2

V1 V2 = 4V12V1

1/2P1

step 1

step 2

Step 1: w = 1/2P1(2V1 – V2) = 1/2P1(2V1) = P1V1

Step 2: w = P1(V1 – 2V1) = P1V1

Total: wII = P1V1 P1V1 = 2P1V1

wII < wI

 Infinite-step compression

P

V

P1

1/4P1 = P2

V1 V2 = 4V1

The minimum amount of work 
done by the environment

for a reversible compression

              

)d(dd

1

2

2

1
min

1

2

1

2

1

2

V
V

nRT

V
V

nRTVnRTV
V

nRT
VPnRTw

V

V

V

V

V

V

ln

lnln



 

Compare with reversible expansion: 
1

2
max V

V
nRTw ln

Same values but opposite signs
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 Cyclic processes

△ Reversible expansion from V1  V2 V2 > V1

1

2

V
V

nRTwq ln endothermic

Followed by reversible compression V2  V1

1

2''
V
V

nRTwq ln exothermic

qnet = q + q' = 0
wnet = 0

△ One step expansion-compression (irreversible)

Wnet = 3/4P1V1 + 3P1V1 = 2.25P1V1

qnet = 2.25P1V1

Positive work is done by the system and heat is released

work   heat

System returned to the original state
but surroundings are changed in a permanent way

In a reversible cyclic process, both system and 
surroundings returned to the original conditions

In reality:  all processes are irreversible
The net w and q depends on path
but  E = 0  E is a state function
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insulation

ideal
gas vacuum

Question: Why a particular process occurs?
Is it due to decrease of energy?

Model study 1:  An adiabatic (絕熱) system

q = 0
w = PV = 0 (note: expansion against zero P)
E = q + w = 0

This is a spontaneous process but no change of E!! 

※ Spontaneous processes and entropy

Model study 2
KI(s)   K+(aq)  +  I(aq) H = +21 kJ

Endothermic yet spontaneous!!

Model study 3
H2O(s)   H2O(l) H > 0

Spontaneous above 0 oC

What's in common?
Increase randomness or disorder

The measurement of randomness: entropy (亂度 or 熵)
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◎ How to measure randomness?
Probability

A model of positional probability

A B

Arrange two balls in two boxes: 22 = 4 possibilities

Possible arrangements Probability
A,B -- ¼
-- A,B ¼
A B ¼
B A ¼

½
(more probability)

Four balls: A, B, C, D (24 = 16 possibilities)

Possible arrangements Probability
ABCD -- 1/16 
ABC D 4/16 = 1/4 (4×3×2/3! = 4)
AB CD 6/16 = 3/8 (4×3/2! = 6)

More probability
For gas , liquid, and solid

Sgas >> Sliq > Ssolid

Occupies more space
 More positional probability
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Ex.
1 mol N2 gas

at 1 atm, 25 oC
1 mol N2 gas

at 1.0 × 12 atm, 25 oC

Larger V
 Higher S

※ The quantitative definition of entropy

Boltzmann defines:  
S = kBlnΩ

(kBNA = R; Ω: the number of microstates)
Ω = 1   S = 0

Boltzmann constant

Avogadro’s number

S = S2 – S1 = kBlnΩ2 – kBlnΩ1 = kBln(Ω2/Ω1)
= kBln2

Consider one particle with volume of V1

When V1  2V1

1  2 = 21

Positions available  S1 = kBlnΩ1 S2 = kBlnΩ2
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A B

A model study

Two particles in 3 positions

Possible states: 32

Three particles in 3 positions
Possible states: 33

n particles in 3 positions
Possible states: 3n

A B

Two particles in 2×3 positions

Possible states:    (2×3)2

n particles in 2×3 positions
Possible states: (2×3)n

1  3n

2  (2×3)n

n
n

n

1

2 2
3

3)(2








Consider two particles with volume of V1

When V1  2V1

1  221

For n particles: V1  2V1

1  2n1 = 2

S = S2 – S1 = kBlnΩ2 – kBlnΩ1

= kBln2
nΩ1 – kBlnΩ1 = kBln(2

n)
= nkBln2

For 1 mol: S = NAkBln2 = Rln2 (when V 2V)

For n mol: S = nRln2 (when V 2V)

Expand this idea:
When V1  V2  for one particle

 SV1V2 = 

1

2

1

2

V
V





)ln(
1

2

V
V

k
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1

2
21 V

V
nRS VV ln 

Recall
Isothermal reversible expansion of ideal gas

ST

V
V

nRTq





      
1

2
rev ln

T
q

S rev

Note: q, T, and V are measurable properties

for n moles

※ Entropy and physical changes

◎ T dependence of entropy

At constant P:
qrev = nCPdT (assume a reversible process)

T

T
q

S revd Since

 TnC
T
T

nCS lnd
d

d PP 
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From T1  T2

  2

1

2

1

dd P

T

T

T

T
TnCS ln

)()(
1

2
P12 T

T
nCSS TT ln

)(
1

2
P21 T

T
nCS TT ln 

Assume CP is constant over the temperature range

Similarly, at constant V

)(
1

2
v21 T

T
nCS TT ln 

◎ Entropy and change of state

solid   liquid at constant P
(a reversible process)

qrev = Hfusion

The equilibrium temperature:  melting point (mp)

mp

fusion

T
H

S




liquid   gas
bp

onvaporizati

T

H
S



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Ex. 2.00 mol H2O from 50. oC to 150. oC at 1 atm
Q: Entropy change?

Soln: Three stages
I H2O(l) (50 oC)   H2O(l) (100 oC)
II H2O(l)   H2O(g) T = 100 oC
III H2O(g) (100 oC)   H2O(g) (150 oC)

Stage I CP for liquid H2O = 75.3 JK1mol1

1

1

2
PI JK 7.21)

323
373

()3.75)(00.2()(  lnln
T
T

nCS

Stage II Hvap = 40.7 kJmol1

112
1

bp

onvaporizati
II molJK 1009.1

K 373
Jmol 10007.40 










T

H
S

For 2.00 mol: SII = 2.18 × 102 JK1

Stage III CP for gaseous H2O = 36.4 JK1mol1

1

1

2
PIII JK 16.9)

373
423

()4.36)(00.2()(  lnln
T
T

nCS

Total
Stotal = SI + SII + SIII = 249 JK1
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※ The second law of thermodynamics

The second law:
In any spontaneous process there is always 
an increase in the entropy of the universe

Suniv = Ssys + Ssurr > 0    for spontaneous process

Suniv < 0   spontaneous for the reverse process

Suniv = 0   at equilibrium

Ex. In a living cell, large molecules are assembled 
from simple ones.  Against the 2nd law?

Ssys is negative

Need to consider Ssurr also

※ The effect of T on spontaneity

System Surroundings
Hsys

When Hsys is negative:
Increases randomness of atoms 
in the surroundings

Qualitatively consider the surroundings as a huge system
With constant P, V and T

Ssurr is primarily determined by the heat flow

Heat   surroundings  Ssurr increases
Heat   surroundings  Ssurr decreases
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Ssurr also depends on T

For the same amount of heat:
Lower T   more randomness
Higher T   less randomness

System Surroundings

Exothermic Ssurr = +             

Endothermic Ssurr = 

heat (J)
T (K)

heat (J)
T (K)

We can define

Ssurr = 
Hsys

T
(Note: Hsurr = Hsys)

Ex. Sb2S3(s) + 3Fe(s)  2Sb(s) + 3FeS(s) H = 125 kJ
Ssurr?  At 25 oC, 1 atm

125 kJ

298 K
Ssurr =  = 419 J/K

The unit of entropy

☆ A quick analysis

Ssys Ssurr Suniv

+ + + spontaneous
   non-spontaneous
+  ?
 + ? depends on the 

relative size
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Suniv = Ssys + Ssurr > 0    for spontaneous process

Suniv = Ssys – > 0    (at constant P, qP = H)
Hsys

T

TSuniv = TSsys – Hsys > 0

Isothermal 
one stage expansion one stage compression

P

V

P1

1/4P1

V1 4V1

P

V

P1

1/4P1

V1 4V1

q = 3/4P1V1 q = 3P1V1

For this overall irreversible cyclic process
qirreversible = 3/4P1V1  3P1V1 <  0

Recall:  For reversible expansion-compression, qrev = 0

0rev 
T

q S = 0 back to the same state

◎ Another approach
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Therefore S is a state function

0irr 
T
q

For all irreversible cycles:

 The Clausius (1822 – 1888) inequality

0  
d

 
dd 1

2

2

1

revirr   T
q

T
q

T
q

For a cyclic
process

0  d 
d 1

2

2

1

irr   S
T
q

0  d
d 2

1

2

1

irr   S
T
q

 d    
d 2

1

2

1

irr   S
T
q







(note: ) 
d

  
d 1

2

2

1

irrirr  
T
q

T
q

(note: ) 
2

1
21

1

2
d  d SSSS

q12 ≠ q21 

Irreversible changes are real changes, 
or natural changes, 
or spontaneous changes

T
q

S irrd
    d 

The universe is an isolated system
Therefore  qirr = 0

 0
d irr 
T
q

 Suniv > 0

Clausius:
“The energy of the universe is constant;
the entropy strives to reach a maximum”
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T
q

S irr    

Assume constant P

T

q
S p    

T
H

S


     

 TS >  H

 TS – H >  0 (for a spontaneous process)

TS – H = T(Sf – Si) – (Hf – Hi) = TSf – Hf – TSi + Hi

For a spontaneous process:

At constant T and P
G = H – TS

★ For a spontaneous process: G > 0
or G < 0  at constant T and P

For a spontaneous process:
TS – H = TSf – Hf – TSi + Hi > 0

G > 0   spontaneous for the reverse process

G = 0   at equilibrium

※ Free energy

Gibbs(1839 – 1903)
Define: G = H –TS (G: Gibbs free energy) 

State function

TSf – Hf – TSi + Hi = – Gf + Gi = G    at constant T and P
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Ex. H2O(s)   H2O(l)
Ho = 6.03 × 103 Jmol1, So = 22.1 JK1mol1

T (oC) Ho (J/mol) So (JK1mol1) TSo (J/mol) Go = Ho – TSo

(J/mol)
10 6.03 × 103 22.1 5.81 × 103 +2.2 × 102

0 6.03 × 103 22.1 6.03 × 103 0

10 6.03 × 103 22.1 6.25 × 103 2.2 × 102 





(Assume Ho and So do not change at different T)

◎ Qualitatively:

H  TS = G
 +  spontaneous

(exothermic) (more random)

+  + non-spontaneous
(endothermic) (less random)

  spontaneous at low T
non-spontaneous at high T

+ + spontaneous at high T
non-spontaneous at low T

In general:  S is more important at higher T
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Ex. Br2(l)   Br2(g)
Ho = 31.0 kJmol1, So = 93.0 JK1mol1

At what T is the reaction spontaneous at 1 atm?

Soln. Find the equilibrium point first
 Go = 0 = Ho – TSo

 Ho = TSo

 T = 
Ho

So
= 

31.0 × 103

93.0
= 333 K

Equilibrium T = bp
(bp: boiling point)

When T > 333 K
 TSo > Ho

 Go < 0
 Spontaneous

※ Entropy changes in chemical reactions

N2(g)  +  3H2(g)   2NH3(g) volume decreases
S: 

4NH3(g) + 5O2(g)  4NO(g) + 6H2O(g) volume increases
S: +

CaCO3(s)   CaO(s)  +  CO2(g) S: +

2SO2(g)  +  O2(g)   2SO3(g) volume decreases
S: 
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In general:
for homogeneous reaction
A + B   C S: 
A   B + C S: +
A + B   C + D S: difficult to estimate

※ Absolute entropies

E and H can not be determined
But S can be determined

The third law of thermodynamics:
Entropy of a perfect crystal at 0 K is zero

Ω = 1 lnΩ = 0

S0T = ST – So = ST = extrapolate

≣

0

1

2
2

1

  )(
T
T

nCTdTCn
T

T
lnln 

At phase transition 
T
H

S




Therefore ST can be determined

If C is a const.
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Standard entropy: So (at 298 K, 1 atm)

So
rxn = npS

o
products – nrS

o
reactants

reaction coefficient

Ex. For O2

Phase I III IIIII IIIl
T (K) 023.66 23.6643.76 43.7654.39
S 2.04 0.95 4.66 4.06 2.40 1.95

Phase lg
T (K) 54.3990.13 90.13298 Total
S 6.46 18.07 3.91 (cal･K-1･mol1) 44.50

sI

sII
sIII

liquid

gas

14

12

10

8

6

4

2

14 23.66 43.76 90.13 298 K

logT

Cp

(calKmol1)

Ex. Al2O3(s) + 3H2(g)  2Al(s) + 3H2O(g)
So

Al2O3(s) = 51 JK1mol1 So
H2(g) = 131

So
Al(s) = 28 So

H2O(g) = 189

Soln.
So

rxn = 2So
Al + 3So

H2O – 3So
H2

– So
Al2O3

= 2(28) + 3(189) – 3(131) – 51
= 179 JK1mol1

Note: has more rotational and 
vibrational freedom than H2

O
HH

自由度

In general: the more complex the molecule 
the higher the entropy
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※ Free energy and chemical reactions

G is measured indirectly

◎ Method 1 Go = Ho – TSo

Ex. C(s)  +  O2(g)   CO2(g)
Ho = 393.5 kJ So = 3.05 JK1

Go = 393.5 – (298)(3.05 × 103)
= 394.4 kJ (per mole of CO2) 

Ex. 2SO2(g)  +  O2(g)   2SO3(g)

Hf
o(SO2) = 297 kJ/mol So(SO2) = 248 JK1mol1

Hf
o(SO3) = 396 So(SO3) = 257

So(O2) = 205

Soln: Ho
rxn = 2(396) – 2(297)

= 198 kJ
So

rxn = 2(257) – 2(248) – 1(205)
= 187 J/K = 187 × 103 kJ/K

Go
rxn = 198 – (298)(187 x 103) = 142 kJ 
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◎ Method 2 Free energy is a state function
The change is independent of the pathway

Derive from known reactions

Ex.
2CO(g) + 4H2O(g)  2CH4(g) + 3O2(g) Go = 1088 kJ
2CH4(g) + 4O2(g)  2CO2(g) + 4H2O(g) Go = 1602 kJ

2CO(g)  +  O2(g)   2CO2(g)  Go = 1088 – 1602 = 514 kJ

Ex. Knowing
C(s)diamond + O2(g)   CO2(g) Go = 397 kJ

C(s)graphite + O2(g)   CO2(g) Go = 394 kJ

Q: C(s)diamond  C(s)graphite Go = ?

Soln: C(s)diamond + O2(g)   CO2(g)
CO2(g)   C(s)graphite + O2(g) 

C(s)diamond  C(s)graphite Go = 397 – (394)
= 3 kJ

In fact: C(s)graphite  C(s)diamond

Can be done at high T (> 1000 oC; increase rate)
and high P (~105 atm; diamond is more compact)

This process is thermally favored but kinetically very slow
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◎ Method 3 From standard free energy of formation

The standard free energy of formation of an element in its 
standard state is zero

(same as enthalpy treatment)

Go
rxn = npGf

o
products – nrGf

o
reactants

Ex. 2CH3OH(g) + 3O2(g)  2CO2(g) + 4H2O(g)
Go

rxn = ?
Known Gf

o for
CH3OH(g) = 163 kJ/mol
CO2(g) = 394 kJ/mol
H2O(g) = 229 kJ/mol

Soln.
Go

rxn = 2(394) + 4(229) – 2(163) = 1378 kJ 

Ex. C2H4(g)  +  H2O(l)   C2H5OH(l)
Q: Spontaneous or not at STP ?

Known Gf
o for

C2H5OH(l) = 175 kJ/mol
C2H4(g) = 68 kJ/mol
H2O(l) = 237 kJ/mol

Go
rxn = (175) – 68) – (237) = 6 kJ 

Spontaneous
(rate ?)
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※ The dependence of G on P

From definition: G = H – TS 
H = E + PV

 G = E + PV – TS

 dG = RTd(lnP) (1 mol and constant T)

dG = dE + PdV + VdP – TdS – SdT

For a reversible system with only PV work
At constant T : dT = 0

dE = q + w = q – PdV
TdS = q

Therefore
dG = q – PdV + PdV + VdP – q = VdP = (nRT/P)dP

Set a reference state with G = Go and P = 1 atm
Integrate from this state to any state of interest

 G – Go = RTln(P/1) = RTlnP
 G = Go + RTlnP

free energy of interest

When P = 1 atm  G = Go (free energy of the gas at 1 atm)
a function of T

 


P

P

G

G
PRTG

1
)(dd

o
ln

One of the principal applications of thermodynamics is 
to find relations between properties that might not be 
thought to be related
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Ex. N2(g)  +  3H2(g)   2NH3(g)

Grxn = npGproducts – nrGreactants

= 2GNH3
– GN2

– 3GH2

From the relationship of G and P:
GNH3

= Go
NH3

+ RTlnPNH3
GN2

= Go
N2

+ RTlnPN2
GH2

= Go
H2

+ RTlnPH2

Grxn = 2Go
NH3

+ 2RTlnPNH3
– Go

N2
– RTlnPN2

– 3Go
H2

– 3RTlnPH2
= (2Go

NH3
– Go

N2
– 3Go

H2
) + RT(2lnPNH3

– lnPN2
– 3lnPH2

)

= Go
rxn + RTln

P2
NH3

PN2
P3

H2

Quotient of the reaction = Q

G = Go + RTlnQ

Reaction quotient

Standard free energy change
(P = 1 atm for all gases)

Ex. CO(g)  +  2H2(g)   CH3OH(l)
At 25 oC start from PCO = 5.0 atm, PH2

= 3.0 atm, G? 

Known: Gf
o (CH3OH) = 166 kJ

Gf
o (H2) = 0 kJ

Gf
o (CO) = 137 kJ

Go = (166) – (137) – 2(0) = 29 kJ

G = Go + RTlnQ
= 2.9 × 104 + (8.31)(298)ln

= 3.8 × 104 J per mol of CO

1

(5.0)(3.0)2

Soln.

[More negative than Go (at 1 atm): agrees with Le Chatelier’s principle]
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※ Free energy and equilibrium

Grxn = npGproducts – nrGreactants

= Hrxn – TSrxn
HA

H

A B

H

HB

reactant product
1 0

mole of A (or nA)
10

mole of B (or nB)

SA

S

A B

S

SB

A B

G  = H TS

GA

GB

G

H = XAHA + XBHB

Randomness due to 
mixing A and B

A B

The equilibrium point:
The point at which there is 
no driving force to go 
towards either direction

G = Go + RTlnQ

At equilibrium: G = 0
Q = K (equilibrium constant)

0 = Go + RTlnK
 Go = RTlnK

The standard free energy change with all 
reactants and products at 1 atm partial pressure

At equilibrium
G = 0 = Gproducts – Greactants

 Gproducts = Greactants

If Greactants > Gproducts  G < 0 rxn
If Greactants < Gproducts  G > 0 rxn
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G = Go + RTlnQ
= RTlnK + RTlnQ
= RTln(Q/K)

When Q = K, G = RTln1 = 0  at equilibrium

When Q > K, G > 0  backward

When Q < K, G < 0  forward 

Agrees with Le Châtelier’s principle!!

Ex. N2(g)  +  3H2(g)   2NH3(g)
Knowing Go = 33.3 kJ per mole N2 at 25 oC

a. PNH3 = 1.00 atm, PN2 = 1.47 atm, PH2 = 1.00 × 102 atm
G = ?

0
)100(1.47)(1.0

(1.00)
)(8.31)(29833.3)(      32

2

o








ln

lnQRTGG

This condition is already at equilibrium

b. PNH3 = 1.00 atm, PN2 = 1.00 atm, PH2 = 1.00 atm

Q = 1  G = Go + RTlnQ = Go = 33.3 kJ 

A negative value
Rxn
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Ex. 4Fe(s)  +  3O2(g)   2Fe2O3(s) K?

Hf
o (kJ/mol) So (JK1mol1)

Fe2O3(s) 826 90
Fe(s) 0 27
O2(g) 0 205

Soln. Ho = 2(826) = 1652 kJ
So = 2(90) – 4(27) – 3(205) = 543 JK1

= 0.543 kJK1

Go = Ho – TSo

= 1652 – (298)(0.543)
= 1.490 × 103 kJ = 1.490 × 106 J
= RTlnK = (8.31)(298)lnK

lnK = 601   2.303㏒K = 601 ㏒K = 261
K = 10261  a highly favorable process

※ The temperature dependence of K

Go = RTlnK = Ho – TSo

Assume Ho, So are T independent (not quite so)
A linear relationship of lnK and 1/T

with slope = (Ho/R)
intercept = So/R

★ Experimentally this is very useful

R
S

RT
H

K
oo 




ln

R
S

TR
H oo 1 










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When Ho > 0 (endothermic)  slope: ()

lnK

1/T

lnK

1/T

When Ho < 0 (exothermic)  slope: ()

T↑  1/T↓  lnK↑

T↑  1/T↓  lnK↓

Consider T1  T2

K1  K2

The van’t Hoff equation:






















12

o

1

2 11
TTR

H
K
K

ln














12

o

12
11
TTR

H
KK lnln

R
S

RT
H

K
o

2

o

2





ln
R
S

RT
H

K
o

1

o

1





ln
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Ex. N2(g)  +  3H2(g)   2NH3(g)
K = 3.7 × 106 at 900 K
Ho = 92 kJ
K at 550 K?

Soln.

K550

3.7 x 106
(92000)

8.31
1

550
1

900
ln =  –

lnK550 = 4.8
2.3㏒K550 = 4.8
㏒K550 = 2.1 = 0.9 – 3 

K550 = 8 × 103

※ Free energy and work

G = H – TS at constant T 
H = E + PV at constant P 
E = qP + w
 H = qP + w + PV
 G = qP + w + PV – TS

Recall , TS = qrevT
q

S rev

 G = qP + w + PV – qrev

 G = (qP – qrev) + w + PV

Recall  qP ≦ qrev , qP – qrev ≦ 0

Define:  w = wuseful + wPV wPV = –PV, usually useless

Works other than PV work



33

 w = wuseful –PV
 G = (qP – qrev) + wuseful –PV + PV
 G = (qP – qrev) + wuseful

Always negative unless for a reversible process,
qP = qrev

For the same G
Only in reversible process:  wuseful = G

the free energy can be used completely
In all irreversible processes (real processes)

some part of G is always released as heat
G can not be converted to useful work completely

Theoretically G represents the maximum useful 
work a system can do

★ Conclusion

At constant T and P
G = maximum useful work

Represented as max
usefulw

Hence, G is called free energy difference

Qualitatively
G:  to know whether a reaction will occur or not

Quantitatively
G = wmax (maximum possible work obtainable)

For a spontaneous reaction
G is the energy that is free to do work

For a non-spontaneous reaction
G is the minimum amount of work that must be 
expended
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Ex. CH3OH(l) + 3/2O2(g)   CO2(g) + 2H2O(l)
If define the fuel efficiency as the work output 
divided by the enthalpy contained in the reaction:
Theoretical efficiency?

Soln: CH3OH (l) CO2(g) H2O(l)

Hf
o 239 393.5 286 kJ/mol

Gf
o 166 394 237

Ho = 393.5 + 2(286) – (239) = 727 kJ

Go = 394 + 2(237) – (166) = 702 kJ

%6.96
727
702

  efficiency lTheoretica 








H
G

◎ Summary

In reality:  all real processes are irreversible (q < TS)
 Maximum work not attainable
 The rise in free energy is less than the external work

done on a system, and the fall in free energy is greater
than the external work done by a system

 Heat is always wasted

Although energy of the universe is a constant, as we use 
energy, we degrade its usefulness

Entropy of the universe increases

Concentrated energy becomes spread out (as thermal E)
– More disorder and less useful

★
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Ex.

Battery Motor

Useful work is wasted as heat
higher current  more heat
lower current  less heat
zero current  zero heat

Maximum amount of work can 
be obtained (no waste)
 Only hypothetical

Ex.

Battery
charged

Battery
discharged

w1

w2

w2 > w1

unless the current ≈ 0 
(a reversible process)

All real processes are irreversible
Work is always wasted as heat

Released into the surroundings
 S goes up
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※ Driving nonspontaneous reactions

Ex. Cu2S(s)   2Cu(s)  +  S(s) Go = +86.2 kJ
S(s)  +  O2(g)   SO2(g) Go = 300.1 kJ

Cu2S(s) + O2(g)  2Cu(s) + SO2(g) Go = 213.9 kJ

◎ Free energy change is the driving force of a reaction
the lower the better:G more negative

 stronger driving force

The most important system for energy conversion
ATP + H2O   ADP + HPO4

2 + H+ G’o =  30.5 kJ/mol

N

NN

N

NH2

O

OHOH

OP

O

O

OP

O

O

OP

O

O

HO

ATP

+ OP

O

O

HO

N

NN

N

NH2

O

OHOH

OP

O

O

OP

O

O

HO

ADP

+   H2O

*G’: at pH 7 and based on water concentration of 55.5 M

 In biological system
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H OH

CH2OH

CHO

OHH

HHO

OHH

+ HOPO3
2

H OH

CH2OPO3
2

CHO

OHH

HHO

OHH

+  H2O G'o = 13.8 kJ/mol

Glucose Glucose 6-phosphate

Positive: 
nonspontaneous

Solution:

+  HOPO3
2 +  H2O G'o = 13.8 kJ/molGlucose Glucose 6-phosphate

ATP   +   H2O ADP +   HOPO3
2 +   H+ G'o = 30.5 kJ/mol

Glucose   +   ATP Glucose 6-phosphate   +   ADP   +   H+ G'o = 16.7 kJ/mol

Through ATP, glucose phosphorylation is possible！

Example

※ Adiabatic (絕熱) process

No heat flows into or out of the system
q = 0  E = q + w = w

ideal
gas

Pext
For adiabatic expansion

w = PextV
E = w = PextV

insulator
Decreased to provide E for the work

Since E = nCvT  nCvT = PextV

If carried out reversibly

 
V

nRT
PP  gasext V

V
nRT

TnC ddV 

V
V
R

T
T
C

ddV 
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For reversible adiabatic change from
V1  V2 T1  T2

 
2

1

2

1

dd
v

V

V

T

T V
V

R
T
T

C

2

1

1

2

1

2
V V

V
R

V
V

R
T
T

C lnlnln 

RC

V
V

T
T

)()(
2

1

1

2 V 

Since CP = CV + R

)(

2

1

1

2 vPV )()( CCC

V
V

T
T  1

2

1
)1(

2

1

1

2 )()( v

P




 

V
V

V
V

T
T C

C


V

P

C
C



1
2

1
1

1

2




 



V

V
T
T


1

22
1

11
   VTVT

Since 
2

22

1

11

T
VP

T
VP



1
2

1
1

11

22




 



V
V

VP
VP

 

11

22

1

2

VP
VP

T
T







2

1

1

2

V
V

P
P




2211 VPVP 
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Ex. 5.00 mol monoatomic ideal gas
25 oC, 10.0 atm 1.00 atm

reversibly
adiabatically

Q: Final V, w ?

3
5

2
3
2
5

V

P 
R

R

C
C


2211 VPVP   3

5

22
3

5

11 VPVP 

L 2.12
atm 10.0

K) 298)(molKatmL 6mol)(0.082 00.5( 11

1

1
1 






P
nRT

V

(10.0 atm)(12.2 L)5/3 = (1.00 atm)V2
5/3

V2
5/3 = (10.0)(12.2)5/3

 logV2
5/3 = log[(10.0)(12.2)5/3]

 5/3 logV2 = log(10.0) + 5/3 log12.2 

 V2 = 48.6 L

K 118
)08206.0)(00.5(

)6.48)(00.1(22
2 

nR
VP

T

E = w = nCVT = (5.00)(3/2)(8.3145)(118 – 298)
= 11,200 J

Reversible adiabatic work
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Compare
If isothermal and reversible

P1 = 10.0 atm V1 = 12.2 L
P2 = 1.00 atm  V2 = 122 L

Reversible isothermal work

J 500,28
2.12

122
)298)(3145.8)(00.5(

1

2  lnln
V
V

nRTw

Deliver more work 
to the surroundings

isothermal

adiabatic

volume (L)
50 100 150

P
(atm)

10

5

Summary

Reversible isothermal expansion
P1V1 = P2V2 or PV = constant

Reversible adiabatic expansion
P1V1

 = P2V2
 or PV = constant

isothermal

adiabatic

P

V

One can connect any two states 
through this plot
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※ Exercises

△ Benzene (C6H6): mp 5.5 oC, Ho
fusion = 10.04 kJmol1 (25.0 oC)

liquid: Cp,l = 133.0 JK1

solid: Cp,s = 100.4 JK1

Q: C6H6(l)   C6H6(s) Ssys and Ssurr at 10.0 oC ?

Ans: First calculate Hfusion at 5.5 oC (T25.0  T5.5)
liquid has higher Cp  releases more heat
qdiff = (Cp,l – Cp,s)(T) = (133.0 – 100.4)(5.5 – 25.0)

= 636 J = 0.636 kJ
 Hfusion = Ho

fusion(25.0 oC) + qdiff

= 10.04 – 0.636 = 9.40 kJ at 5.5 oC

K
J

 8.33
5.50.273

40.9fusion
fusion 







T
H

S

C6H6(l)   C6H6(s) S278.5 = 33.8 JK1 at 5.5 oC

From 5.5 oC to 10.0 oC
liquid: Sl = Cpln(T2/T1) = (133.0)ln(283.0/278.5)
solid: Ss = Cpln(T2/T1) = (100.4)ln(283.0/278.5)

Overall difference
Ss – Sl = (100.4 – 133.0)ln(283.0/278.5) = 0.517 JK1

Ssys = S278.5 + Sdiff = 33.8  0.517 = 34.3 JK1
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Ssurr = Hsys/T (at 283.0 oC)

To find Hfusion at 10.0 oC:
First find qdiff from 25.0  10.0 oC

qdiff = (Cp,l – Cp,s)(T) = (133.0 – 100.4)(10.0 – 25.0)

= 489 J = 0.489 kJ

Hfusion(10.0) = Hfusion(25.0) + qdiff = 10.04 – 0.489

= 9.55 kJ

C6H6(l)   C6H6(s) H = 9.55 kJ at 10.0 oC

K
J

 7.33
0.283

)1055.9( 3
sys

surr 






T

H
S

△ Decomposition of Ag2CO3(s)
Ag2CO3(s)   Ag2O(s) + CO2(g) Ho = 79.14 kJ/mol

At equilibrium PCO2
= 6.23 × 103 torr (25 oC) 

Q: PCO2
necessary to prevent the decomposition at 110. oC?

Soln: To prevent decomposition: G = Go + RTlnQ110 > 0
Since Go = RTlnK110

We need a Q110 > K110

Find So first, and then find K110

6
3

25 1020.8
torr760

torr 1023.6 





K

RTlnK25 = (8.315)(298)ln(8.20 × 106) =  29.0 × 103 J

Ho – TSo = RTlnK25

 J/K 168 kJ/K  168.0
298

0.2914.79o 


S



43

A better way:
Assuming Ho is constant over 25125 oC







 




298
1

383
1

R

o

25

110 H
K
K

ln







 


 

298
1

383
1

315.8
1014.79

)1020.8log(log303.2
3

6
110K

 K110 = 9.86 × 103

 PCO2
= 9.86 × 103 atm = 7.49 torr

Assuming Ho and So are constant over 25125 oC

Ho – TSo = RTlnK110  obtain K110

Conclusion: PCO2
has to be larger than 7.49 torr

to have G = Go + RTlnQ110 > 0


