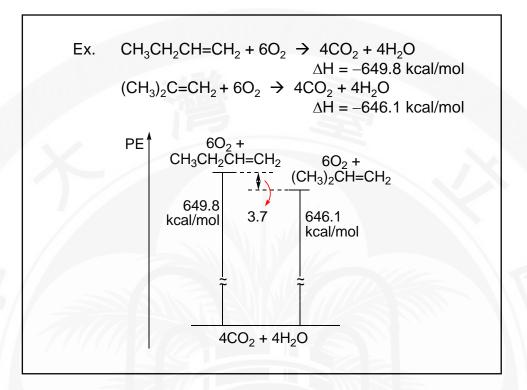
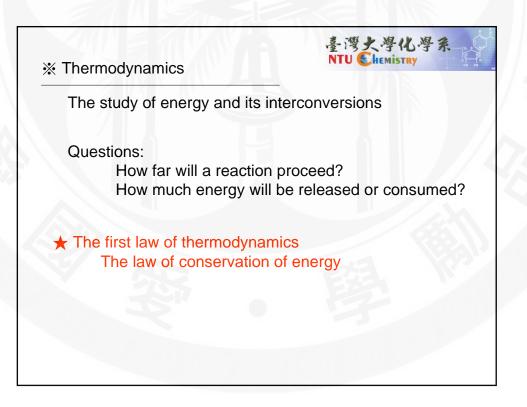
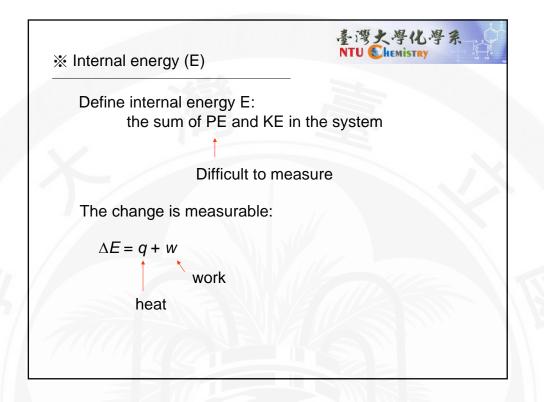
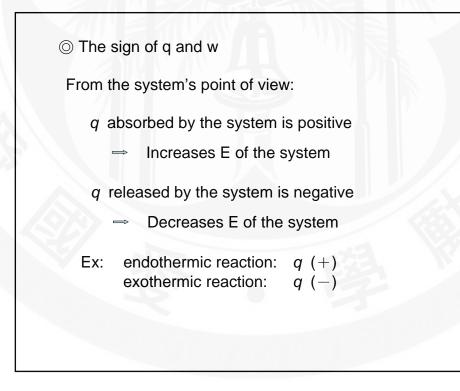
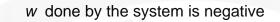

 Energy transfer: through work and heat


Work: a force acting over a distance

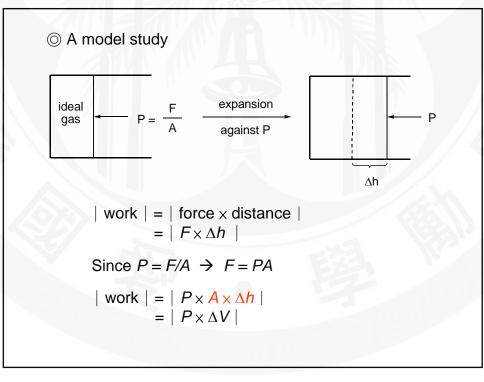

In previous example: work is done on B by A

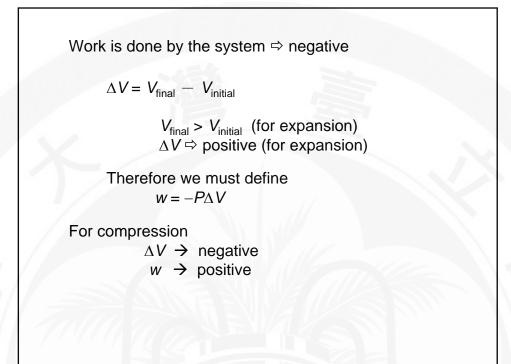


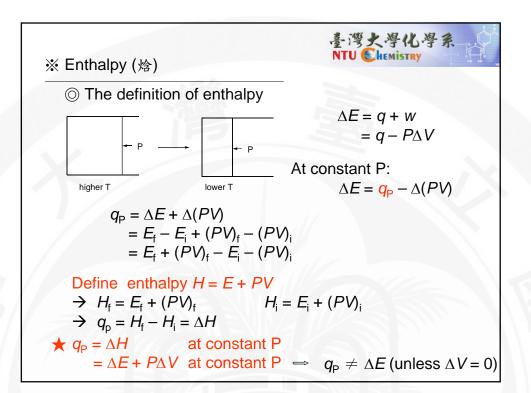


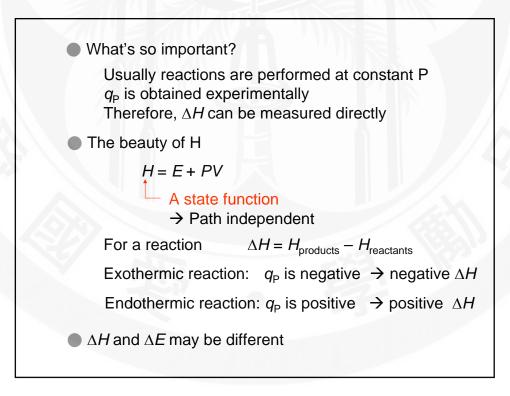









- ⇒ Decreases E of the system
- w done by the surroundings on the system is positive
  - → Increases E of the system



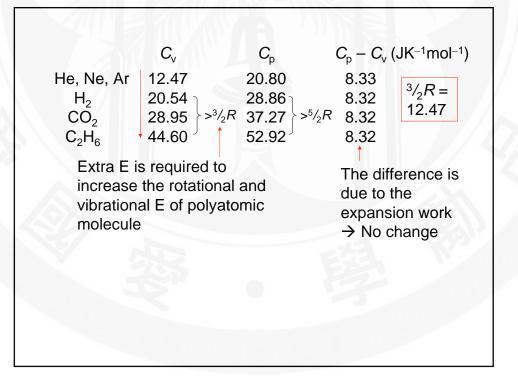


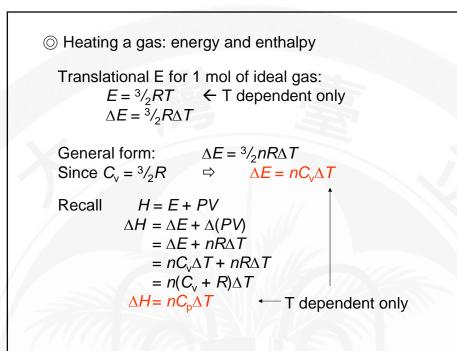

Ex: A balloon  

$$4.00 \times 10^{6} L \xrightarrow{heat} 4.50 \times 10^{6} L$$
Expands against 1.0 atm,  $\Delta E$ ?  
Soln:  $\Delta E = q + w$   
 $q = +1.3 \times 10^{8} J$   
 $w = -P\Delta V$   
 $= -(1.0 \text{ atm})(0.50 \times 10^{6} \text{ L})$   
 $= -5.0 \times 10^{5} \text{ atm} \cdot L$   
 $= -(5.0 \times 10^{5})(101.3) = -5.1 \times 10^{7} J$   
 $\Delta E = +(1.3 \times 10^{8}) - 5.1 \times 10^{7} J$   
 $= 8 \times 10^{7} J$ 






\* Thermodynamics of ideal gases  
(a) Heating 1 mol of an ideal gas at constant V  


$$T_1 \rightarrow T_2 \quad \Delta V = 0$$
  
 $(KE)_{avg} = 3/_2 RT$  (note: total  $E = KE + PE$ )  
 $\Delta KE = 3/_2 RT_2 - 3/_2 RT_1 = 3/_2 R\Delta T = \Delta E$   
 $\Delta V = 0$   $\Rightarrow$  no PV work ( $w = 0$ )  
 $\Rightarrow \Delta E = q_v + w = 3/_2 R\Delta T$   $\Rightarrow q_v = 3/_2 R\Delta T$   
 $\Rightarrow \Delta E = q_v at constant V$ 

✓ Molar heat capacity (熱容)  

$$C = \frac{\text{heat absorbed}}{\text{increase in T}} = \frac{q}{\Delta T} \text{ (per mol)}$$

$$C_v = \frac{q_v}{\Delta T} \Rightarrow C_v = \frac{3}{2}R$$
Heat required to change T of 1 mol ideal gas by 1 K at constant V

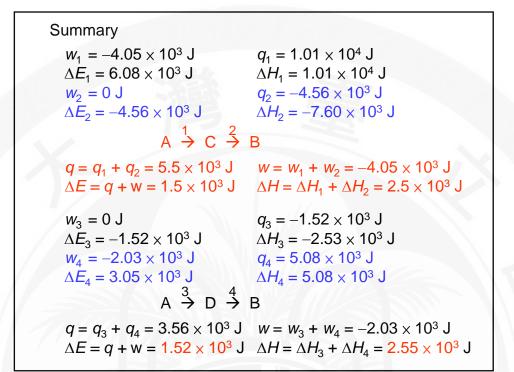


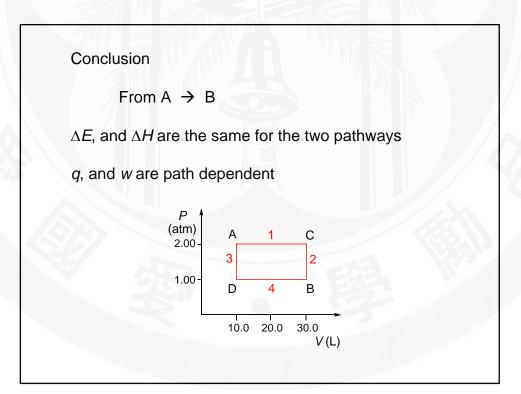


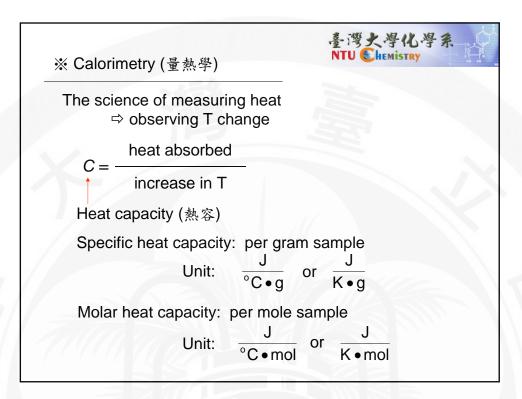
| E∝T ⇔<br>H∝T ⇔                                                                             | slope =<br>slope = | $ \begin{array}{c} nC_{v} \\ nC_{p} \end{array} \end{array} $ Independent of P or V<br>But $q = nC\Delta T$<br>is dependent on condition |
|--------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Summary                                                                                    |                    |                                                                                                                                          |
| $C_v = \frac{3}{2}R$<br>$C_v > \frac{3}{2}R$                                               |                    | Monoatomic ideal gas<br>Polyatomic ideal gas<br>(measured by exp.)                                                                       |
| $C_{p} = C_{v} + R$<br>$C_{p} = \frac{5}{2}R = \frac{3}{2}R + R$<br>$C_{p} > \frac{5}{2}R$ |                    | All ideal gases<br>Monoatomic ideal gas<br>Polyatomic ideal gas<br>(measured by exp.)                                                    |
| $\Delta E = nC_{\rm v}\Delta T$ $\Delta H = nC_{\rm p}\Delta T$                            |                    | All ideal gases<br>All ideal gases                                                                                                       |

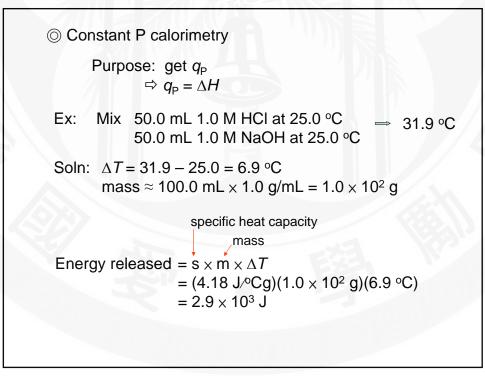
Ex. From state A 
$$\rightarrow$$
 state B  $P_{(atm)}$   
Q:  $q, w, \Delta E, \Delta H$ ?  
Step 1  
 $W_1 = -P\Delta V$   
 $= -(2.00 \text{ atm})(30.0 \text{ L} - 10.0 \text{ L})$   
 $= -4.00 \times 10 \text{ L} \cdot \text{atm} = -4.05 \times 10^3 \text{ J}$   
At A:  $P_1V_1/nR = T_1$  At C:  $P_2V_2/nR = T_2$   
 $\Delta T = T_2 - T_1 = \frac{P(V_2 - V_1)}{nR} = \frac{(2.00)(20.0)}{nR} = \frac{40.0 \text{ L} \cdot \text{atm}}{nR}$   
 $= \frac{4.05 \times 10^3 \text{ J}}{nR}$   
 $q_1 = q_p = nC_p\Delta T = n(\frac{5}{2}R)(\frac{4.05 \times 10^3}{nR}) = 1.01 \times 10^4 \text{ J}$ 

$$\Delta E_{1} = nC_{v}\Delta T = n(\frac{3}{2}R)(\frac{4.05 \times 10^{3}}{nR}) = 6.08 \times 10^{3} \text{ J}$$


$$\Delta H_{1} = q_{p} = q_{1} = 1.01 \times 10^{4} \text{ J}$$


$$\sum_{\substack{p \\ (atm) \\ 2.00 \\ 1.00 \\ yergen (atm) \\ zergen (at$$


Another way to calculate 
$$\Delta H_2$$
  
 $\Delta H_2 = \Delta E_2 + \Delta (PV) = \Delta E_2 + (1.00 - 2.00)30.0 \text{ L} \cdot \text{atm}$   
 $= -4.56 \times 10^3 - 3.04 \times 10^3 \text{ J}$   
Step 3  
 $w_3 = 0$   
 $\Delta T = \frac{(P_f - P_i)V}{nR} = \frac{(-1.00)(10.0)}{nR} = \frac{-10.0 \text{ L} \cdot \text{atm}}{nR} = \frac{-1.01 \times 10^3 \text{ J}}{nR}$   
 $q_3 = q_v = nC_v \Delta T = n(\frac{3}{2}R)(\frac{-1.01 \times 10^3}{nR}) = -1.52 \times 10^3 \text{ J}$   
 $\Delta E_3 = q_v = q_3 = -1.52 \times 10^3 \text{ J}$   
 $\Delta H_3 = nC_p \Delta T = n(\frac{5}{2}R)(\frac{-1.01 \times 10^3}{nR}) = -2.53 \times 10^3 \text{ J}$ 


Step 4  

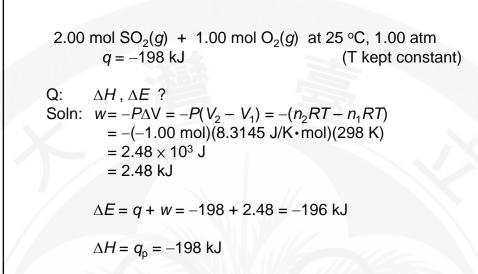
$$w_4 = -P\Delta V = -(1.00 \text{ atm})(30.0 \text{ L} - 10.0 \text{ L})$$
  
 $= -2.00 \times 10 \text{ L} \cdot \text{atm} = -2.03 \times 10^3 \text{ J}$   
 $\Delta T = \frac{P(V_f - V_i)}{nR} = \frac{(1.00)(20.0)}{nR} = \frac{20.0 \text{ L} \cdot \text{atm}}{nR} = \frac{2.03 \times 10^3 \text{ J}}{nR}$   
 $q_4 = q_p = nC_p\Delta T = n(\frac{5}{2}R)(\frac{2.03 \times 10^3}{nR}) = 5.08 \times 10^3 \text{ J}$   
 $\Delta E_4 = nC_v\Delta T = n(\frac{3}{2}R)(\frac{2.03 \times 10^3}{nR}) = 3.05 \times 10^3 \text{ J}$   
 $\Delta H_4 = q_p = q_4 = 5.08 \times 10^3 \text{ J}$ 

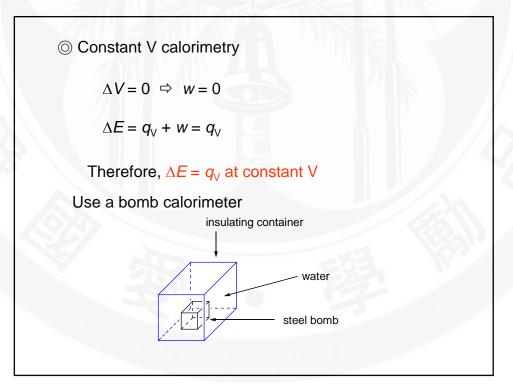


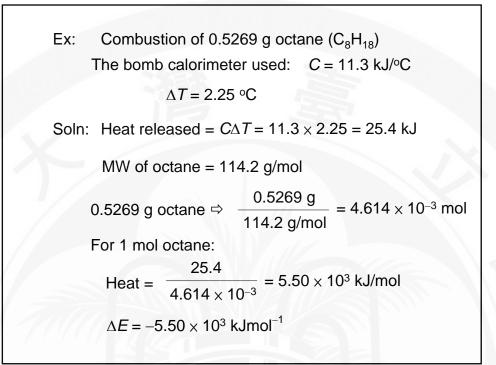


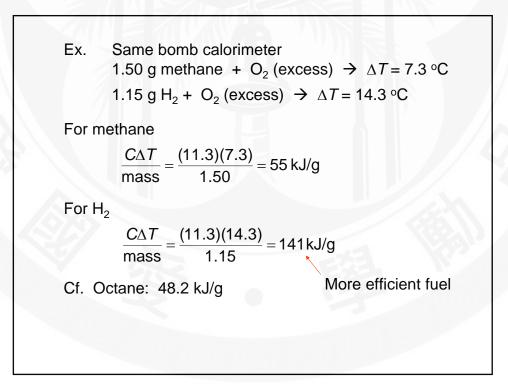


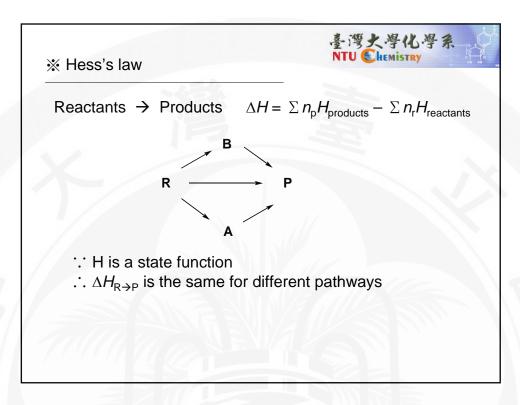


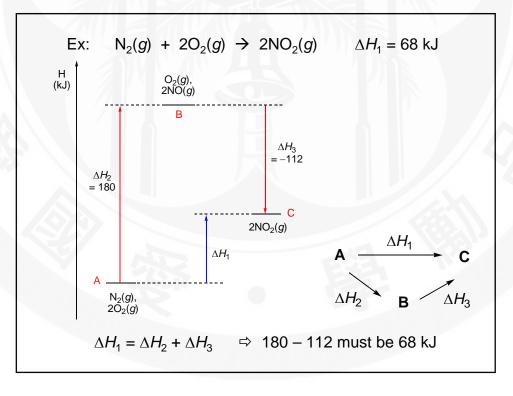

Heat is an extensive (外延) property related to the amount of substance T is an intensive (內涵) property not related to the amount of substance

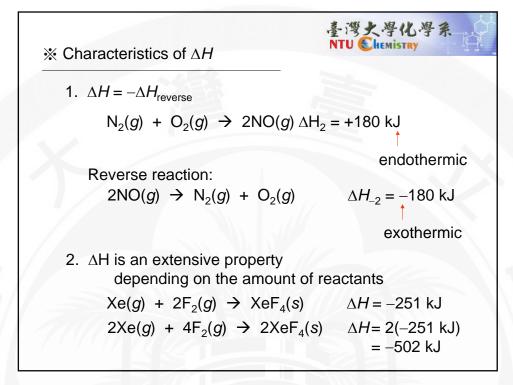

50.0 mL 1.0 M HCl  $\Rightarrow$  5.0 x 10<sup>-2</sup> mol H<sup>+</sup>


 $\frac{2.9 \times 10^3 \text{ J}}{5.0 \times 10^{-2} \text{ mol}} = 5.8 \times 10^4 \text{ J/mol}$ 


 $H^+(aq) + OH^-(aq) \rightarrow H_2O(I) \qquad \Delta H = -58 \text{ kJ/mol}$ 

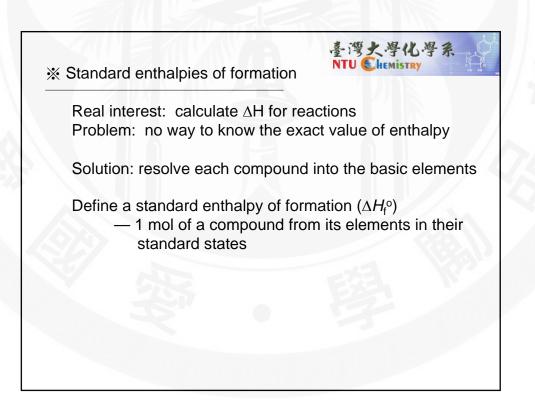

 ♦ At constant P with PV work
 Example above: reaction in solution assumption:  $\Delta V = 0 \Rightarrow w = 0$  $\Delta E = q_p + w = q_p = \Delta H$  Ex.  $2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$ There is volume change – volume decreased
  $w = -P\Delta V$ (+)  $\Delta E = q_p + w = \Delta H + w$ Different values

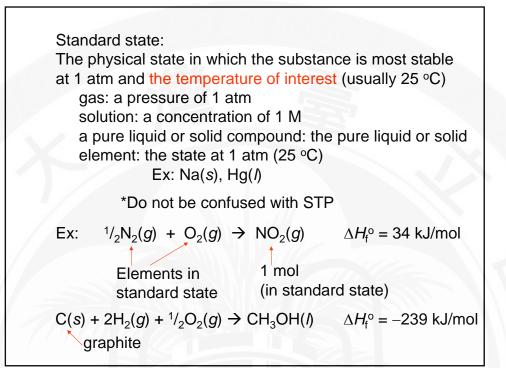


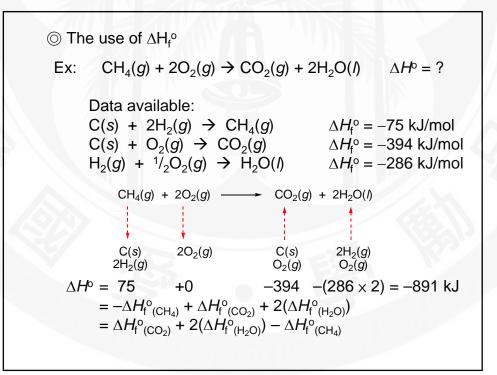







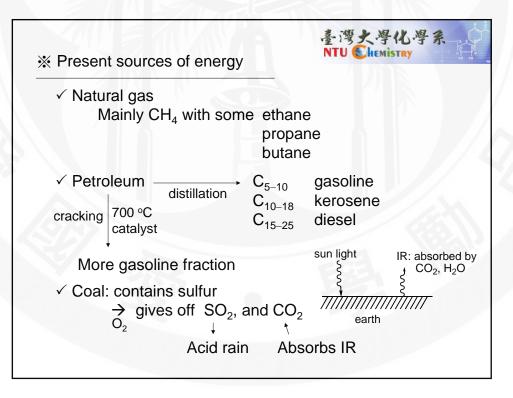

Ex: 
$$2B(s) + 3H_2(g) \rightarrow B_2H_6(g) \qquad \Delta H = ?$$
  
Data available:  
(a)  $2B(s) + {}^{3/2}O_2(g) \rightarrow B_2O_3(s) \qquad \Delta H = -1273 \text{ kJ}$   
(b)  $B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(s) + 3H_2O(g) \qquad \Delta H = -2035 \text{ kJ}$   
(c)  $H_2(g) + {}^{1/2}O_2(g) \rightarrow H_2O(l) \qquad \Delta H = -286 \text{ kJ}$   
(d)  $H_2O(l) \rightarrow H_2O(g) \qquad \Delta H = 44 \text{ kJ}$ 

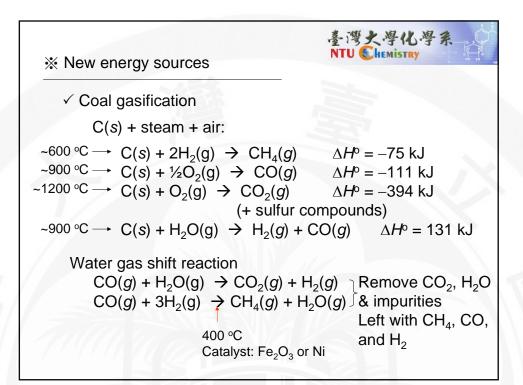
 $2B(s) + 3H_2(g) \rightarrow B_2H_6(g)$  $\Delta H = ?$ Ex: Soln: +a (for B)  $2\mathsf{B}(s) + \frac{3}{2}\mathsf{O}_2(g) \rightarrow \mathsf{B}_2\mathsf{O}_3(s)$  $\Delta H = -1273 \text{ kJ}$ +3c (for  $H_2$ )  $3H_2(g) + 3/_2O_2(g) \rightarrow 3H_2O(h)$  $\Delta H = -286 \times 3 \text{ kJ}$ -b (for  $B_2H_6$ )  $B_2O_3(s) + 3H_2O(g) \rightarrow B_2H_6(g) + 3O_2(g) \quad \Delta H = 2035 \text{ kJ}$ +3d (for H<sub>2</sub>O)  $3H_2O(I) \rightarrow 3H_2O(g)$  $\Delta H = 44 \times 3 \text{ kJ}$  $2B(s) + 3H_2(g) \rightarrow B_2H_6(g)$  $\Delta H = -1273 - (286 \times 3) + 2035 + (44 \times 3)$ = +36 kJ

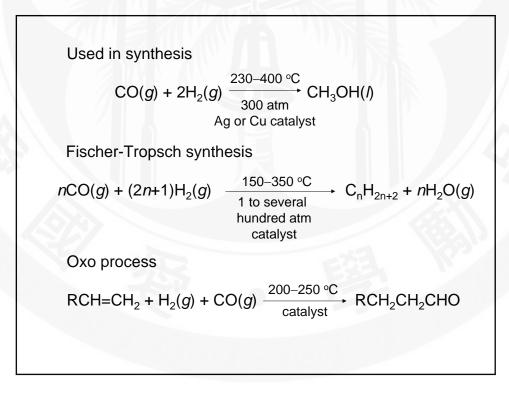







Conclusion:


$$\Delta H^{o}_{rxn} = \sum n_{p} \Delta H^{o}_{f (products)} - \sum n_{r} \Delta H^{o}_{f (reactants)}$$


(elements in their standard state are not included)

Cf.  $\Delta H = \sum n_p H_{products} - \sum n_r H_{reactants}$ Ex:  $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(l)$   $\uparrow$   $\uparrow$   $\uparrow$  $\Delta H_f^{\circ}: -46$  34 -286 kJ/mol

 $\Delta H^{\circ} = 6(-286) + 4(34) - 4(-46) = -1396 \text{ kJ}$ 







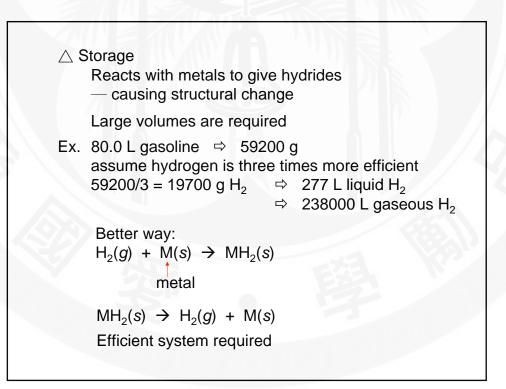
✓ Hydrogen

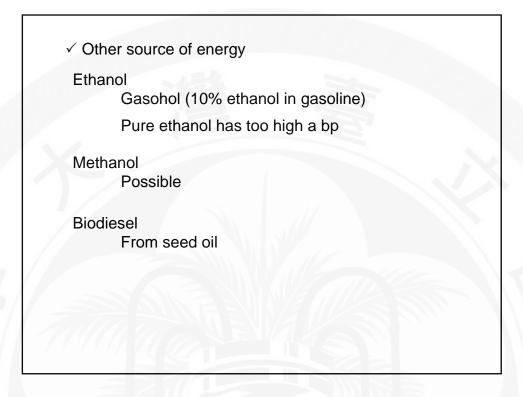
 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ 

 $\Delta H^{\circ} = -286 \text{ kJ}$ 

Highly exothermic No pollution

Problems


riangle Costs


Main source:  $CH_4(g) + H_2O(g) \rightarrow 3H_2(g) + CO(g)$ 

Electrolysis of water? Cheap electricity required

Thermolysis of water? Efficient catalytic system required

Photo-biological decomposition of water? New biological system required





| ※ Exercise                                                                                                                                                                                                                                                            | Exercise                                                                                                           |                              |                                            | <b></b> |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------|---------|--|--|
| Q: H <sub>2</sub> C                                                                                                                                                                                                                                                   | $\Delta H_{\rm fH_{2O(1)}}^{\rm o} = -285.8$ $D(1) \rightarrow H_2(g) + \frac{1}{2}$ $298 \text{ K and 1 atm, } 2$ | $^{2}O_{2}(g)$               |                                            |         |  |  |
| Soln: H <sub>2</sub> (                                                                                                                                                                                                                                                | $g) + \frac{1}{2} \operatorname{O}_2(g) \rightarrow$                                                               | H <sub>2</sub> O( <i>I</i> ) | $\Delta H_{\rm f}^{\rm o}{}_{\rm H_2O(l)}$ |         |  |  |
| ⇒ H <sub>2</sub> C                                                                                                                                                                                                                                                    | $D(l) \rightarrow H_2(g) + \frac{1}{2}$                                                                            | 2 O <sub>2</sub> (g)         | $\Delta H^{\rm o}$ = 285.8 k               | J/mol   |  |  |
| Assuming $V_{H_2} + \frac{1}{2} V_{O_2} >> V_{H_2O(l)}$                                                                                                                                                                                                               |                                                                                                                    |                              |                                            |         |  |  |
| $\Rightarrow  \Delta V = V_{H_2} + \frac{1}{2} V_{O_2} = 1.5(24.6 \text{ L}) = 36.9 \text{ L}$<br>$\Rightarrow  \Delta E^\circ = \Delta H^\circ + w = \Delta H^\circ - P\Delta V$<br>$\Rightarrow  \Delta E^\circ = 285.8 - (1)(36.9)(0.1013) = 282.1 \text{ kJ/mol}$ |                                                                                                                    |                              |                                            |         |  |  |
|                                                                                                                                                                                                                                                                       |                                                                                                                    |                              |                                            |         |  |  |