

* Buffered solutions Resists a change in pH Ex. Blood pH 7.35~7.45 $HA(aq) \leftrightarrows H^+(aq) + A^-(aq)$ ini [HA] 0 [A⁻] (M) final [HA]-x x [A⁻]+x $\mathcal{K}_a = \frac{x([A^-]+x)}{[HA]-x} \quad x = [H^+]$ Assume x is small: $\mathcal{K}_a = [H^+] \bullet \frac{[A^-]}{[HA]} \implies [H^+] = \mathcal{K}_a \bullet \frac{[HA]}{[A^-]}$ Henderson-Hasselbalch equation $pH = p\mathcal{K}_a - log(\frac{[HA]}{[A^-]}) = p\mathcal{K}_a + log(\frac{[A^-]}{[HA]})$

Buffering capacity: determined by the real magnitude of $[A^{-}]$ and [HA]✓ Buffer system in blood $H_2O(l) + CO_2(g) \Leftrightarrow H_2CO_3(aq) \Leftrightarrow H^+(aq) + HCO_3^-(aq)$ Serves to control $pK_{a1} = 6.1$ at physiological T the H_2CO_3 conc. For a buffer pH of 7.4 $pH = pK_{a1} + log(\frac{[HCO_3^-]}{[H_2CO_3]}) \implies \frac{[HCO_3^-]}{[H_2CO_3]} \approx 20$ Higher conc. [HCO₃[−]] ~ 0.024 *M* ← In reality More effective to neutralize [H₂CO₃] ~ 0.0012 M extra acid Low capacity to neutralize extra base

※ The exact treatment	臺灣大學化學系 NTU Chemistry
A pair of HA/A ⁻ (from NaA)	
$HA(aq) \leftrightarrows H^+(aq) + A^-(aq)$	$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$
$\begin{array}{rl} H_2O\;(aq)\;\leftrightarrows\;H^+(aq)\;+\;OH^-(aq)\\ Charge\;balance\\ [Na^+]\;+\;[H^+]\;=\;[A^-]\;+\;[OH^-]\\ Mass\;balance\\ [HA]_{o}\;+\;[A^-]_{o}\;=\;[HA]\;+\;[A^-] \end{array}$	K _w = [H ⁺][OH [−]] ([Na ⁺] = [A [−]] _o)
Four relationships, four unknowns	s: [H+], [OH⁻], [HA], [A⁻]
$[OH^{-}] = K_{w} / [H^{+}]$	
From charge balance \Rightarrow $[A^-]_o +$ \Rightarrow $[A^-] = [A^-]_o + [H^+] - K_w / [H^+]_w$	· [H+] = [A ⁻] + <i>K</i> _w / [H+] ⁺]

From mass balance

$$[HA]_{o} + [A^{-}]_{o} = [HA] + [A^{-}]_{o} + [H^{+}] - \mathcal{K}_{w} / [H^{+}]$$

$$\Rightarrow \qquad [HA] = [HA]_{o} - \frac{[H^{+}]^{2} - \mathcal{K}_{w}}{[H^{+}]}$$

$$\mathcal{K}_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{[H^{+}]([A^{-}]_{o} + \frac{[H^{+}]^{2} - \mathcal{K}_{w}}{[H^{+}]})}{[HA]_{o} - \frac{[H^{+}]^{2} - \mathcal{K}_{w}}{[H^{+}]}}$$
In fact, when $\frac{[H^{+}]^{2} - \mathcal{K}_{w}}{[H^{+}]}$ is small $\Rightarrow \mathcal{K}_{a} \approx \frac{[H^{+}][A^{-}]_{o}}{[HA]_{o}}$

A buffered solution with $3.0 \times 10^{-4} M$ HOCI Ex. 1.0×10^{-4} M NaOCI HOCI $(aq) \Leftrightarrow H^+(aq) + OCI^-(aq)$ $K_{a} = 3.5 \times 10^{-8} = \frac{x(1.0 \times 10^{-4} + x)}{3.0 \times 10^{-4} - x}$ $x \sim 1.1 \times 10^{-7} M$ Assume x << 1.0×10^{-4} ⇔ Assumption OK But this is a very small value Check $\frac{[H^+]^2 - K_w}{[H^+]} = \frac{(1.1 \times 10^{-7})^2 - 1.0 \times 10^{-14}}{1.1 \times 10^{-7}}$ In the range Small compared with 10⁻⁴ of 10-7 Conclusion: autoionization of H₂O has no effect unless [HA] or [A-] are very small

$$\mathcal{K}_{a1} = \frac{[H^+][H_2A^-]}{[H_3A]} \qquad \mathcal{K}_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]}$$

$$\Rightarrow \quad \mathcal{K}_{a1} \bullet \mathcal{K}_{a2} = \frac{[H^+]^2[HA^{2-}]}{[H_3A]}$$

$$\Rightarrow \quad p\mathcal{K}_{a1} + p\mathcal{K}_{a2} = 2\,pH - \log\frac{[HA^{2-}]}{[H_3A]}$$
Since $[HA^{2-}] = [H_3A]$ at equivalence point
$$\Rightarrow \quad p\mathcal{K}_{a1} + p\mathcal{K}_{a2} = 2\,pH$$

$$\Rightarrow \quad pH = \frac{p\mathcal{K}_{a1} + p\mathcal{K}_{a2}}{2}$$

* Solubility equilibria
and the solubility product
Ex.

$$CaF_{2}(s) \xrightarrow{H_{2}O} Ca^{2+}(aq) + 2F^{-}(aq)$$

$$K_{sp} = [Ca^{2+}][F^{-}]^{2}$$
Solubility product constant
Ex. Bi₂S₃(s) $\Rightarrow 2Bi^{3+}(aq) + 3S^{2-}(aq)$
solubility = $1.0 \times 10^{-15} M$ at $25 \circ C$

$$K_{sp} = [Bi^{3+}]^{2}[S^{2-}]^{3} = (2.0 \times 10^{-15})^{2} (3.0 \times 10^{-15})^{3} = 1.1 \times 10^{-73}$$

Solubility = x for Bi₂S₃

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} = 108x^{5} \implies x = \sqrt[5]{\frac{K_{sp}}{108}}$$

$$\mathcal{K}_{sp} = (2x)^{2}(3x)^{3} \implies x$$

Ex.
$$Fe(OH)_3$$
, $K_{sp} = 4 \times 10^{-38}$
Q: Solubility in water
Soln: $Fe(OH)_3(s) \Rightarrow Fe^{3+}(aq) + 3OH^{-}(aq)$
Assume OH⁻ derived from $Fe(OH)_3$ is very small
 $\Rightarrow [OH^{-}] = 1 \times 10^{-7} M$
At equilibrium: $[Fe^{3+}](1 \times 10^{-7})^3 = 4 \times 10^{-38}$
 $\Rightarrow [Fe^{3+}] = 4 \times 10^{-17} M$ Small indeed
The exact solution:
 $[Fe^{3+}][OH^{-}]^3 = 4 \times 10^{-38}$
 $[H^+][OH^{-}] = 1 \times 10^{-14}$
 $3[Fe^{3+}] + [H^+] = [OH^{-}] \Rightarrow [H^+] = [OH^{-}] - 3[Fe^{3+}]$
 $\Rightarrow ([OH^{-}] - 3[Fe^{3+}])([OH^{-}]) = [OH^{-}]^2 - 3[Fe^{3+}][OH^{-}]$
 $= 1 \times 10^{-14}$

$$[OH^{-}]^{2} - 3[Fe^{3+}][OH^{-}] = 1 \times 10^{-14}$$

$$\Rightarrow [OH^{-}]^{4} - 3[Fe^{3+}][OH^{-}]^{3} = (1 \times 10^{-14})[OH^{-}]^{2}$$

$$\Rightarrow [OH^{-}]^{4} - 3(4 \times 10^{-38}) = (1 \times 10^{-14})[OH^{-}]^{2}$$

$$\Rightarrow [OH^{-}]^{4} - (1 \times 10^{-14})[OH^{-}]^{2} - 12 \times 10^{-38} = 0$$

$$\Rightarrow [OH^{-}]^{2} = 1 \times 10^{-14}$$

$$\Rightarrow [OH^{-}]^{2} = 1 \times 10^{-7} M$$

* Qualitative analysis • Formation of precipitate (ppt) ion product $Q > K_{sp}$ Full britial value • Separate through selective precipitation Ex. A solution of $1.0 \times 10^{-4} M \operatorname{Cu}^{+}_{2.0 \times 10^{-3}} M \operatorname{Pb}^{2+}_{2+} + \Gamma$ Pbl₂ $K_{sp} = 1.4 \times 10^{-8} = (2.0 \times 10^{-3})([\Gamma])^{2}_{1}$ $\Rightarrow [\Gamma] = 2.6 \times 10^{-3} M$ Minimum value to precipitate Pb²⁺ Cul $K_{sp} = 5.3 \times 10^{-12} = (1.0 \times 10^{-4})([\Gamma])_{1}$ $\Rightarrow [\Gamma] = 5.3 \times 10^{-8} M$ Cu⁺ will precipitate first

** Complex ion equilibria

$$Ag^{+}(aq) + NH_{3}(aq) \leftrightarrows Ag(NH_{3})^{+}(aq) \qquad K_{1} = 2.1 \times 10^{3}$$
Ligand
Coordination number: 1

$$AgNH_{3}^{+}(aq) + NH_{3}(aq) \leftrightarrows Ag(NH_{3})_{2}^{+}(aq) \qquad K_{2} = 8.2 \times 10^{3}$$
The major equilibrium:

$$Ag^{+}(aq) + 2NH_{3}(aq) \leftrightarrows Ag(NH_{3})_{2}^{+}(aq)$$

$$K_{f} = \frac{[Ag(NH_{3})_{2}^{+}]}{[Ag^{+}][NH_{3}]^{2}} = \frac{[Ag(NH_{3})^{+}][Ag(NH_{3})_{2}^{+}]}{[Ag^{+}][NH_{3}][NH_{3}][Ag(NH_{3})^{+}]} = K_{1} \cdot K_{2} = 1.7 \times 10^{7}$$
With excess NH₃
all Ag⁺ will be converted to Ag(NH_{3})_{2}^{+}

Ex. Mixing 100.0 mL of 2.0
$$M$$
 NH₃
with 100.0 mL of $1.0 \times 10^{-3} M$ AgNO₃

After mixing: $[NH_3] = 1.0 M$ $[Ag^+] = 5.0 \times 10^{-4} M$
 $[NH_3] >> [Ag^+] = 5.0 \times 10^{-4} M$

At equilibrium
 $[NH_3] = 1.0 M$ $[Ag(NH_3)_2^+] = 5.0 \times 10^{-4} M$
 $\mathcal{K}_2 = \frac{[Ag(NH_3)_2^+]}{[NH_3][Ag(NH_3)^+]} = \frac{5.0 \times 10^{-4}}{(1.0)[Ag(NH_3)^+]} = 8.2 \times 10^3$
 \Rightarrow $[Ag(NH_3)^+] = 6.1 \times 10^{-8} M$
 $\mathcal{K}_4 = \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2} = \frac{5.0 \times 10^{-4}}{[Ag^+](1.0)^2} = 1.7 \times 10^7$
 \Rightarrow $[Ag^+] = 2.9 \times 10^{-11} M$

☆ More exa	amples	臺灣大學化學系 NTU <mark>Chemistry</mark>
Q: Solub AgC HCN	ility of AgCN(s) in a sol N(s)	n with [H ⁺] = 1.0 M? $J^{-}(aq) K_{sp} = 2.2 \times 10^{-12}$ $T^{-}(aq) K_{a} = 6.2 \times 10^{-10}$
Soln	AgCN(s) \leftrightarrows Ag ⁺ (aq) H ⁺ (aq) + CN ⁻ (aq) 4) + CN ⁻ (aq) ∓ HCN(aq)
AgC	$K(s) + H^+(aq) \leftrightarrows Ag^+$ $K = \frac{K_{sp}}{K_a} = \frac{2.2 \times 10^{-12}}{6.2 \times 10^{-10}} = \frac{100}{100}$	(aq) + HCN(aq) = 3.5×10 ⁻³
Ag Ini Equil	$CN(s) + H^+(aq) \leftrightarrows Aq$ $1.0 \qquad 0$ $1.0 - x \qquad x$	g ⁺ (<i>aq</i>) + HCN(<i>aq</i>) 0 0 x x
$\frac{x^2}{1.0-x}$	$= 3.5 \times 10^{-3} \Rightarrow x = 5.$	$7 \times 10^{-2} M = [Ag^+]$

► Q: Solubility of CuBr(s) in 1.0 L of 1.0 *M* NaCN ?
CuBr(s)
$$\leftrightarrows$$
 Cu⁺(*aq*) + Br⁻(*aq*) $K_{sp} = 1.0 \times 10^{-5}$
Cu⁺(*aq*) + 3CN⁻(*aq*) \leftrightarrows Cu(CN)₃²⁻(*aq*) $K_{f} = 1.0 \times 10^{11}$
Soln CuBr(s) + 3CN⁻(*aq*) \leftrightarrows Br⁻(*aq*) + Cu(CN)₃²⁻(*aq*)
 $K = K_{sp} \cdot K_{f} = 1.0 \times 10^{6} \quad \text{every large}$
Essentially 1.0 *M* CN⁻ is all converted to Cu(CN)₃²⁻
 \Rightarrow [Cu(CN)₃²⁻] = [Br⁻] = $\frac{1}{3}(1.0 \text{ M}) = 0.33 \text{ M}$
 $K_{sp} = [Cu^{+}][Br^{-}] = 1.0 \times 10^{-5} = [Cu^{+}][0.33]$
 \Rightarrow [Cu⁺] = $3.0 \times 10^{-5} \text{ M}$
 $K_{f} = \frac{[Cu(CN)_{3}^{2^{-}}]}{[Cu^{+}][CN^{-}]^{3}} = \frac{0.33}{(3.0 \times 10^{-5})[CN^{-}]^{3}} = 1.0 \times 10^{11}$
 \Rightarrow [CN⁻] = $4.8 \times 10^{-3} \text{ M}$

► Q: With 0.1 M H₂S,
$$[Cu^{2+}] = [Mn^{2+}] = 1.0 \times 10^{-3} M$$
,
pH range where CuS precipitates but MnS doesn't ?
 $CuS(s) \leftrightarrows Cu^{2+}(aq) + S^{2-}(aq) \quad K_{sp} = 8.5 \times 10^{-45}$
MnS(s) $\leftrightarrows Mn^{2+}(aq) + S^{2-}(aq) \quad K_{sp} = 2.3 \times 10^{-13}$
Soln $[Cu^{2+}][S^{2-}] = 8.5 \times 10^{-45} = [1.0 \times 10^{-3}][S^{2-}]$
 $\Rightarrow [S^{2-}] = 8.5 \times 10^{-42} M$ for precipitation of CuS
 $[Mn^{2+}][S^{2-}] = 2.3 \times 10^{-13} = [1.0 \times 10^{-3}][S^{2-}]$
 $\Rightarrow [S^{2-}] = 2.3 \times 10^{-10} M$ for precipitation of MnS
 $H_2S(aq) \leftrightarrows 2H^+(aq) + S^{2-}(aq) \quad K = 1 \times 10^{-26}$
Assume $[H_2S]$ doesn't change
 $\frac{[H^+]^2[S^{2-}]}{[H_2S]} = \frac{[H^+]^2[S^{2-}]}{0.10} = 1 \times 10^{-26} \Leftrightarrow [H^+] = \sqrt{\frac{1 \times 10^{-27}}{[S^{2-}]}}$

• Q: In a buffer with pH = 2.00, solubility of SrF₂(s) ?
SrF₂(s)
$$\Rightarrow$$
 Sr²⁺(aq) + 2F⁻(aq) $K_{sp} = 7.9 \times 10^{-10}$
HF(aq) \Rightarrow H⁺(aq) + F⁻(aq) $K_{a} = 7.2 \times 10^{-4}$
Soln [H⁺] = 1.0 × 10⁻²
SrF₂(s) + 2H⁺(aq) \Rightarrow 2HF(aq) + Sr²⁺(aq)
Equil 1.0×10^{-2} 2x x
 $K = \frac{[HF]^{2}[Sr^{2+}]}{[H^{+}]^{2}} = \frac{K_{sp}}{K_{a}^{2}} = \frac{7.9 \times 10^{-10}}{(7.2 \times 10^{-4})^{2}} = \frac{(2x)^{2}(x)}{[1.0 \times 10^{-2}]^{2}}$
 $x^{3} = 38 \times 10^{-9} \Rightarrow x = 3.4 \times 10^{-3} M$