2 Atoms, Molecules, and Ions

※ A historical background of chemistry

(ref. The History of Chemistry by John Hudson, 1992)

Early chemistry: Development of technologies (Experiments)

 ○ Neolithic revolution stone age → bronze age → iron age
 Important tool of technology: fire

✓ Extraction of metal:

Au, Ag, Cu, Fe
from meteorite

Through chemical reactions

Ex. Malachite charcoal

(CuCO₃)

✓ Pottery and glass as early as 4000 BC

√ Pigments and dyes

Ex. indigo

red: iron oxide yellow: iron carbonate black: manganese dioxide

as early as 30,000 yrs

- Early speculationThe first principle
- The ionian: materialistic explanation Thales (~585 BC)Water

Anaximander (~555 BC)
Boundless

Anaximenes (~535 BC) Mist

Heraclitus (~500 BC) Fire

Western Greek philosopherPythagoras (~560 BC)Mathematical approach

Parmenides (~500 BC)

Truth should be sought by reason alone

Empedocles (~450 BC)
Observation is important

ex. Clepsydra experiment

→ air is a material substance

Idea

four roots: earth, air, fire, and water two forces: attraction, and repulsion

Greek mainland

Anaxagoras (500 – 428 BC)

Every material always retains a portion of every other material

Leucippus (478 BC) Democritus (420 BC) Proposed atoms (indivisible)

Socrates (470 - 399 BC)

Socrates method

Focused on moral and ethical issues

Plato (427 – 347 BC)

Primary roots: five regular polyhedra

Aristotle (384 – 322 BC)

Four element theory (from Empedocles)

Against atomic theory

Perform little experiment

○ The era of alchemy (煉金)

Primary goal: base metal → gold

632 AC Islam expansion

Baghdad became center of learning
The idea of alchemy imported from China

12th century

Influenced European scholars

Ex. Wine distillation, water cooled condenser

13th century

Discovery of sulfuric acid, nitric acid

From alchemy to chemistry

Three traditions

The Aristotelian

The Magical

The Mechanical

17th century – modern science began to emerge Up rise of mechanical philosophy Influence of Archimedes (287 – 212 BC)

Bacon (1561 - 1626)

Experiments should be planned.

Results should be repeated and verified.

Experimental science emerged → New ideas

√ Robert Boyl (1627 – 1691)

A strong believer in mechanistic interpretation of chemical phenomenon

Critical to Aristotle's concept of four elements

Studied combustion

Exp. red hot iron plate in a vessel \rightarrow evacuate

- → drop combustible materials on it
- → catch no fire
- > release air in
- → catch fire

Exp.

metal $\xrightarrow{\Delta}$ calx (oxide) gain weight

Conclusion: metal + phlogiston → calx

Exp. Fe + H⁺ \rightarrow H₂ inflammable

✓ Robert Hooke (1635 – 1703)

Constructed a coherent theory of combustion

Air: Absorbs phlogiston

When saturated – ceased burning

In vacuum - no combustion because vac. can

not absorb phlogiston

Problem: Burning of metal

→ gives off phlogiston

But calx gains weight?

✓ Black (1728 – 1799)

1756 MgCO₃ — MgO + CO₂

magnesia alba magnesia Fixed air

 $\begin{array}{l} \mathsf{MgO} + \mathsf{H}_2\mathsf{SO}_4 \to \mathsf{MgSO}_4 + \mathsf{H}_2\mathsf{O} \\ \mathsf{MgSO}_4 + \mathsf{K}_2\mathsf{CO}_3 \to \mathsf{MgCO}_3 + \mathsf{K}_2\mathsf{SO}_4 \end{array}$

mild alkali

Similarly for quick-lime (CaCO₃)

```
✓ Priestley (1733 – 1804)
       1774 HgO
                                      Hg + O_2
                           heat
                         from light
                                     Strongly absorbs phlogiston
       1778 Aquatic plants → give off O<sub>2</sub>

√ Scheele (1742 – 1786)

              K<sub>2</sub>S absorbs O<sub>2</sub> in the air
       Exp.
               → residual gas is lighter than ordinary air
               → termed foul air (N<sub>2</sub>)
                                    Does not absorb phlogiston

√ Cavendish (1731 – 1810)

          2H_2 + O_2 \rightarrow H_2O
    Theory:
    (H_2O + phlogiston) + (H_2O - phlogiston) \rightarrow H_2O
```

O New era

Lavoisier (1743 – 1794)

Exp. Boiling of H₂O in a closed vessel

→ discredit phlogiston

Exp. Heating Sn in a sealed apparatus

→ SnO₂

Oxygen theory

Exp. HgO $\xrightarrow{\text{heating}}$ Hg $\xrightarrow{\text{O}_2}$ HgO

→ Air is composed of two parts

√ The question of H₂ Known: metal + acid \rightarrow H₂ Theory based on phlogiston: phlogiston $\equiv H_2$ (calx + phlogiston) + acid → (calx + acid) + phlogiston metal H_2 For Lavoisier: If H₂ is not phlogiston, then what is H₂? Hint from Cavendish's exp. $2H_2 + O_2 \rightarrow 2H_2O$ Exp. H_2O + red hot Fe \rightarrow calx + H_2 Theory: metal + $H_2O \rightarrow$ metal oxide + H_2 calx (H&O)

Fundamental chemical laws

Lavoisier – Law of conservation of mass (quantitative analysis)

Proust (1754 – 1826)
Law of definite proportion
(by 1808 generally accepted)

Dalton (1766 – 1844)

Law of constant composition:

Compound is composed of atoms with the same combination

Ex. Two ways to combine C & O

Compound I 1 g C 1.33 g O Compound II 1 g C 2.66 g O

 ⇒ Law of multiple proportions (Berzelius, 1779 – 1848, determined 200 inorganic compound in 10 years)

Problem

could not determine absolute formula

CO C_2O_2 ------ CO_2 C_2O_4 ------

Dalton's atomic theory (1808)

- 1. Element composed of atoms
- 2. Different element different atoms
- 3. Compound atoms combined in a definite ratio
- 4. Chemical reaction reorganize atoms

Atomic weights (1805)

1 g H, 8 g O → water

If AW(O) = $8 \times AW(H)$ \rightarrow water = OH \checkmark Principle of If AW(O) = $16 \times AW(H)$ \rightarrow water = OH₂ simplicity

etc.

(by 1826, Berzelius's table contained 49 elements)

1809 Gay-Lussac (1778 – 1850)

Studied reactions of gases existence of simple whole number

Ex.
$$2 H_2 + 1 O_2 \rightarrow 2 H_2 O_1 + 1 Cl_2 \rightarrow 2 HCl_2 + 1 O_2 \rightarrow 2 NO_2 + 1 O_2 +$$

1811 Avogadro (1776 – 1856)

Avogadro hypothesis

Same T, P

equal volumes of different gases contain the same number of particles

Proposed

diatomic molecules (accepted in 1860)

 \Rightarrow Water = H_2O

Problem: the idea of diatomic molecule was not accepted

The new era
 (Cannizarro's interpretation)

1860 First International Chemical Congress at Karlsruhe (Organizer: Kekule (1829 – 1896))

Cannizarro (1826 - 1910)

- 1. Compounds contain whole number of atoms
- 2. Adopt Avogadro's hypothesis

$$AW(H) = 1 \rightarrow MW(H_2) = 2$$

$$\frac{W_{1LO_2}}{W_{1LH_2}} = \frac{16}{1} = \frac{32}{2}$$
 \implies AW(O) = 16

Carbon dioxide: relative mass = 44 (compared with hydrogen) with 27% of C $(44 \times 0.27 = 12)$

44 g CO₂: 12 g C 32 g O If AW(C) = 12 \rightarrow CO₂

How can we determine the AW of C?

	Rel. mass	% C	Rel. mass	
Methane	16	75	12	←16 × 0.75
Ethane	30	80	24	
Propane	44	82	36	
Butane	58	83	48	
CO ₂	44	27	12	

→ Conclusion: AW(C) = 12

Mendeleev

"我清楚的記得他的演講帶給我的印象,可說是在闡述確實的真理而無懈可擊,而這些真理是基於亞佛加厥,蓋哈特(Gerhardt)以及雷諾(Regnault)等在當時幾乎完全不被認同的觀念。雖然真正的共識在當時尚未能達成,但是這個會議的目的卻達到了,因為在數年之後,卡氏的想法證實為唯一能通過檢驗的理論,也代表原子為分子或化合物組成的最小部分。唯有如此真實的原子量,而非過去的各種數值,才能成為一切理論的基礎。"

Meyer (1830 – 1895) "The Modern Theory of Chemistry" 1864

"當這些數值鑽入我眼中時,所有的疑問都已消失,取代而之的是一種最為平和的確實感"
-- a feeling of the most peaceful assurance --

1869 The first periodic table

Characterization of atom

Study of cathode ray tubes

→ cathode ray

→ different metals, same result

Thomson's postulation

negatively charged particles (electrons)

$$\frac{e}{m} = -1.76 \times 10^8 \text{ C/g}$$

Thomson's plum pudding model (1904)

1909 Millikan (1868 – 1953)

determined the charge of electron

→ the mass of e⁻ = 9.11 × 10⁻³¹ kg

Nuclear atom

Early 20th century: radioactivity α particle: +2 charge

 $mass = 7300 M_{e^-}$

1906 Rutherford

 α particle

Most of the particles passed through but some particles were deflected at large angles

Naming simple compounds

(nomenclature)

1782 De Morveau

A substance should have one fixed name, which should reflect its composition

1787 Lavoisier

"Methods of Chemical Nomenclature"

統一命名法則: IUPAC systematic nomenclature

[↑]國際化學與化工學會 International Union of Pure and Applied Chemistry

◎ Type I: binary ionic compounds 離子化合物

M+ A-

M+: metal cation 金屬陽離子(only one charge type)

A-: anion 陰離子

Rules:

1. cation first

2. Cation takes the name of the atom

Ex. NaCl sodium chloride

3. anion with -ide suffix

Ex. chlorine ⇒ chloride

Some common cations and anions

 H^{-} hydride H+ hydrogen OH⁻ hydroxide Li+ lithium Na+ sodium $\mathsf{F}^$ fluoride K+ potassium CI chloride bromide Br⁻ Mg²⁺ magnesium Ca²⁺ iodide calcium $O^{2^{-}}$ oxide Ba²⁺ barium $S^{2^{-}}$ AI^{3+} aluminum sulfide N_{3-} nitride

 N_3 nitride N_3 azide

Li₃N lithium nitride (氮: nitrogen)

NaN₃ sodium azide

MgO magnesium oxide (氧:oxygen)

 Type II: binary ionic compounds cation with more than one type of charge

Ex. Fe(II)Cl₂, Fe(III)Cl₃

FeCl₂ IUPAC: iron(II) chloride Common: ferrous chloride FeCl₃ IUPAC: iron(III) chloride Common: ferric chloride Common names: -ous (lower charge), -ic (higher charge)

Transition metals:

 Zn^{2+} , Ag^+

(Zn: zinc; Ag: silver)

lanthanides: Ce Pr Nd PmSmEu Gd Tb Dy Ho Er Tm Yb Lu actinides: Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr

 $\begin{array}{lll} \text{Cu}^+ : \text{ cuprous} & \text{Cu}^{2+} : \text{ cupric} \\ \text{Sn}^{2+} : \text{ stannous} & \text{Sn}^{4+} : \text{ stannic} \\ \text{Hg}_2^{2+} : \text{ mercurous} & \text{Hg}^{2+} : \text{ mercuri} \end{array}$ Cu²⁺: cupric Hg²⁺: mercuric

Al₂O₃ aluminum oxide Ex.

only one type of charge

CoBr₂ cobalt(II) bromide

△ Polyatomic anions

SO₄2-: sulfate (硫酸根) SO₃2-: sulfite (亞硫酸根)

Rules: -ate (with more O), -ite (with fewer O)

CIO⁻: hypochlorite (次氯酸根)

CIO₂⁻: chlorite (亞氣酸根) CIO₃⁻: chlorate (氣酸根) CIO₄⁻: perchlorate (過氣酸根)

Rules: hypo (with fewer O), per (with more O)

NO₃-: nitrate (硝酸根) NO2: nitrite (亞硝酸根)

PO₄3-: phosphate (磷酸根) HPO₄²⁻: hydrogen phosphate $H_2PO_4^{-}$: dihydrogen phosphate

CO₃²⁻: carbonate (碳酸根)

HCO₃⁻: hydrogen carbonate (also called bicarbonate)

 $O_2^{2^-}$: peroxide (過氧根)

△ Polyatomic cation

NH₄+ ammonium ion

Ex. NH₄Cl ammonium chloride

△ Prefix (to indicate number)

mono- 1 di- 2 tri- 3 tetra- 4 penta- 5 hexa- 6 hepta- 7 octa- 8

Type III: binary covalent compounds contain two nonmetals

Very similar to ionic compounds

N₂O dinitrogen monoxide (common: nitrous oxide)

NO nitrogen monoxide (or oxide) (common: nitric oxide)

NO₂ nitrogen dioxide

N₂O₃ dinitrogen trioxide

N₂O₄ dinitrogen tetraoxide

N₂O₅ dinitrogen pentaoxide

Note:

monooxide but not monoxide (N₂O and NO are exception) pentaoxide but not pentoxide

mono never used for the first element

○ Acids (酸)

HCI hydrochloric acid (hydrogen chloride) hydrosulfuric acid (hydrogen sulfide) H₂S (hydrogen cyanide) HCN hydrocyanic acid

 \triangle With oxygen

 SO_4^{2-} : sulfate SO_3^{2-} : sulfite H_2SO_4 : sulfuric acid H_2SO_3 : sulfurous acid

 $\mathrm{HNO_3}$: nitric acid $\mathrm{HNO_2}$: nitrous acid

HCIO: hypochlorous acid (次氯酸) HCIO₂: chlorous acid (亞氣酸) HCIO₃: chloric acid (氯酸) HCIO₄: perchloric acid (過氣酸)